Lava

Framework for developing neuro-inspired applications, mapping them to neuromorphic hardware.

Lava

Overview

Lava is an open-source software framework designed for neuromorphic computing, aiming to develop neuro-inspired applications and their mapping to neuromophic hardware. Developed and maintained by the Intel Neuromorphic Computing Team, Lava offers developers and researchers tools and abstractions to develop applications that fully utilize the benefits of neural computation. Additionally, it provides neuromorphic hardware to intelligently learn from and respond to real-world data with great gains in energy efficiency and speed.

While its specific alignment with neuromorphic hardware can be a limitation for those who lack access to such resources, Lava boasts many interesting features and capabilities due to this alignment. The library offers a modular structure for integrating algorithms and supports a wide variety of neuron models, network topologies, and training tools. This makes the project highly flexible and versatile, enabling users to define individual neurons, neural networks, interfaces to third-party devices, and compatibility to other software frameworks.

Furthermore, Lava is platform-agnostic, meaning it can run on any combination of operating systems and underlying architectures. This allows for prototyping on different CPUs/GPUs and deployment on various neuromorphic chips. Lava’s standout features include hyper-granular parallelism, functions and tools for building dynamic neural networks, forward connectivity to link multiple neural network models, and a focus on high energy efficiency and speed. As a comprehensive and innovative library with a focus on advanced research, Lava is a valuable tool for exploring the intersection of neuroscience and hardware engineering.

Can you contribute tutorial guides or case studies?

Get Involved with ONM

NorthPole, IBM's latest Neuromorphic AI Hardware

NorthPole, IBM's latest Neuromorphic AI Hardware

  • Fabrizio Ottati

Translating the NorthPole paper from IBM to human language.

Spiking Neurons: A Digital Hardware Implementation

Spiking Neurons: A Digital Hardware Implementation

  • Fabrizio Ottati

Learn how to model Leaky Integrate and Fire (LIF) neurons in digital hardware. Understand spike communication, synapse integration, and more for hardware implementation.

Efficient Compression for Event-Based Data in Neuromorphic Applications

Efficient Compression for Event-Based Data in Neuromorphic Applications

  • Gregor Lenz, Fabrizio Ottati, Alexandre Marcireau

Discover methods to efficiently encode and store event-based data from high-resolution event cameras, striking a balance between file size and fast retrieval for spiking neural network training.