C-DNN and C-Transformer: Mixing ANNs and SNNs for the Best of Both Worlds

Join us for a talk by Sangyeob Kim, Postdoctoral researcher at KAIST, on designing efficient accelerators that mix SNNs and ANNs.

Sangyeob and his team have developed a C-DNN processor that effectively processes object recognition workloads, achieving 51.3% higher energy efficiency compared to the previous state-of-the-art processor. Subsequently, they have applied C-DNN not only to image classification but also to other applications, and have developed the C-Transformer, which applies this technique to a Large Language Model (LLM). As a result, they demonstrate that the energy consumed in LLM can be reduced by 30% to 72% using the C-DNN technique, compared to the previous state-of-the-art processor. In this talk, we will introduce the processor developed for C-DNN and C-Transformer, and discuss how neuromorphic computing can be used in actual applications in the future.

Social share preview for C-DNN and C-Transformer: mixing ANNs and SNNs for the best of both worlds

Upcoming Workshops

The TSP1 Neural Network Accelerator Chip: Advancing Brain-Inspired Computing
Chris Eliasmith, Danny Rosen
November 11, 2025
8:00 - 9:00 EST

About the Speakers

Sangyeob Kim

Sangyeob Kim

Post-Doctoral Associate at KAIST, PhD in Electrical Engineering. Researches energy-efficient SoCs, DNN accelerators, and neuromorphic hardware.
Fabrizio Ottati

Fabrizio Ottati

AI/ML Processor Engineer at NXP, PhD from Politecnico di Torino. Focuses on event cameras, digital hardware, and deep learning. Maintains Tonic & Expelliarmus.

Inspired? Share your work.

Share your expertise with the community by speaking at a workshop, student talk, or hacking hour. It’s a great way to get feedback and help others learn.

Related Workshops

PEPITA - A Forward-Forward Alternative to Backpropagation

PEPITA - A Forward-Forward Alternative to Backpropagation

Explore PEPITA, a forward-forward approach as an alternative to backpropagation, presented by Giorgia Dellaferrera. Learn about its advantages and implementation with PyTorch.

Advances in Neuromorphic Visual Place Recognition

Advances in Neuromorphic Visual Place Recognition

Tobias Fischer shares advances in neuromorphic visual place recognition.

What's Catching Your Eye? The Visual Attention Mechanism

What's Catching Your Eye? The Visual Attention Mechanism

Delve into the world of visual attention mechanisms with Giulia D'Angelo as she explores the interplay of bottom-up and top-down processes, offering insights into bio-inspired models for enhanced robotic perception and interaction.