From C/C++ to Dynamically Scheduled Circuits

Explore the journey from C/C++ to Dynamically Scheduled Circuits with Lana Josipović, an expert in high-level synthesis and reconfigurable computing. Join her recorded workshop session on innovative hardware design techniques.

About the Speakers

Lana Josipović

Lana Josipović

Assistant Professor at ETH Zurich, PhD from EPFL. Researches reconfigurable computing, HLS for dynamically scheduled circuits. Developer of Dynamatic.
Fabrizio Ottati

Fabrizio Ottati

AI/ML Processor Engineer at NXP, PhD from Politecnico di Torino. Focuses on event cameras, digital hardware, and deep learning. Maintains Tonic & Expelliarmus.
Social share preview for From C/C++ to Dynamically Scheduled Circuits

Upcoming Workshops

No workshops are currently scheduled. Check back soon for new events!

Are you an expert in a neuromorphic topic? We invite you to share your knowledge with our community. Hosting a workshop is a great way to engage with peers and share your work.

Inspired? Share your work.

Share your expertise with the community by speaking at a workshop, student talk, or hacking hour. It’s a great way to get feedback and help others learn.

Related Workshops

The TSP1 Neural Network Accelerator Chip: Advancing Brain-Inspired Computing

The TSP1 Neural Network Accelerator Chip: Advancing Brain-Inspired Computing

Join Chris Eliasmith for an in-depth exploration of the TSP1 chip from Applied Brain Research. Learn about this groundbreaking hardware platform and its implications for brain-inspired computing.

NIR: A unified instruction set for brain-inspired computing

NIR: A unified instruction set for brain-inspired computing

We show how to use the Neuromorphic Intermediate Representation to migrate your spiking model onto neuromorphic hardware.

Towards Training Robust Computer Vision Models for Neuromorphic Hardware

Towards Training Robust Computer Vision Models for Neuromorphic Hardware

Join Gregor Lenz as he delves into the world of event cameras and spiking neural networks, exploring their potential for low-power applications on SynSense's Speck chip. Discover the challenges in data, training, and deployment stages. Don't miss this talk on training robust computer vision models for neuromorphic hardware.