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Proud of our roots Biomechanics
The university’s roots (history) can be traced back to the year 1823 and the
founding of the Stadtische Polytechnikum (Municipal Polytechnic) — the oldest of
our forerunners.

A renowned patron

The university is named after the world-renowned physicist, Georg Simon Ohm (biography), who was a physics Autonomous
and mathematics professor in Nuremberg between 1833 and 1849, and also fulfilled the role of rector. Vehicles
Healthcare R
The famous omega .
’ = G

concerning electrical resistance.

The Greek letter omega in the university’s logo is a tribute to Georg Simon Ohm's greatest discovery — his law ||

Transportation
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Sensorimotor Processing, Intelligence, and Control in Efficient compute Systems (SPICES) Lab

Fast, Efficient, Robust and Green Infe;ence

Frames/data from traditional system Traditional surveillance system

Event data from our proposed system

Learning algorithms
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e Goal

e Solution overview

* Sensing and algorithmics
* Performance evaluation

* Deployment
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Goal

“Vision Zero” as a street safety policy that strives for the elimination
of traffic fatalities for all transportation modes.

McKee Road & Jackson Avenue, San Jose, California Tully Road & La Ragione Avenue, San Jose, California

Cost effective and accurate solutions are needed to detect pedestrians

during the day and especially at nighttime to implement safety measures.

Solutions need to have a very good energy footprint, robustness, and a
budget that allows scaling to city level.

SAN JOSE

CAPITAL OF SILICON VALLEY

VZsJ

ASAP!
R oo &=



https://goo.gl/maps/H29pmFNg2TuFNpce9
https://goo.gl/maps/zY8cfegViFKYWNwq6
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Solution overview

System deployment (SNN)

Event-based
DVS

Camera
Input

N
N

Event-based
Dataset Building
& Storing

Models
Training &
Evaluation

N—

Training/
Re-training

Inference output

e

Deployment
of FOMO
MobileNet

End-to-end pipeline — Data flow diagram

(Brainchip 10 Board

RaspberryPI

Brainchip

>

Inference output

.

Deployment
of Event-based
Expectation
Maximisation

Online-learning

End-to-end pipeline — Data flow diagram

System deployment (Event-based EM)

End-to-end pipeline — System hardware

brainchi|5)=

The Neuromorphic Computing Company

@

7
HTTP:/ /NEUROCOMPUTING.SYSTEMS
CST - EECS - KTH StockHOLM, SWEDEN
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Solution overview

\

/~ Data acquisition module

Hardware module Basic operation

Efficient encoding
in

of q
scene reflecfance

“6ood temporal
DVS$128 sensor chip resolution (<10 us)

" || “Longe illumination
ronge (120 dB).

Microcontroller LPCA337 32bit ARM Cortex
| + MO for event fetching & data transmission
+ M4 available for custom spplication,
Up to 204MHz, 136KB SRAM (104K8 available)

Battery charging circuitry,

Reset button ~_
~ auniliary LiPo battery connector

Power switch

Auxiliary power input, 4-6V

vision DVS -
individual sensor pixels react i p
individual sensor pixels spike asynchronously
spikes (events) ion about its

Dynamic Vision Sensor)
0 in light i i

polarity, and a timestamp

K8

ﬁodel life-cycle module

1. Object Detection FOMO (Faster Objects, More Objects) MobileNetV2 0.35

_/
ﬂ

2. Event-based Expectation Maximization

- EDGE IMPULSE

~N

(" Data pre-processing module
SN T ee——_———

.

System deployment (Event-based EM)

2. Event-based Expectation Maximization

Deployment for inference/online-learning on Akida DevKit with RasPi
Deployment for inference/online-learning on the DVS board MCU

System deployment (SNN)

1. Object Detection FOMO (Faster Objects, More Objects) MobileNetV2 0.35

Deployment for inference in Brainchip Akida DevKit Board with RasPi
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Solution development and life-cycle

s

" EDGE IMPULSE

Cristian Axenie / Proect SPOER - Team NearOhir Brainchp Adca

Project info Keys Export jobs

L Dashboard

Devices

Cristian Axenie / Project SPIDER - Team NeurOhm Brainchip Akida

% Impulse design SPIDER - Spiking Per [

Getting started - Sharing
@ EON Tuner

Retrain rrode) start bullding your dataset or validate your medel's on-cevice performance:
SUrall oge

I U fication
= ] =
8 Modeltesting
1 Add existing data Collect new data Upload your model
versioning
@ Deployment Run thism

Start with a tuterial " -
Scan QR co

Not sure where to start? Follow a tutonal to build your first madel In just minures!
GETTING STARTED

7 Documentation

Forums
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Approach

* Sensing

Hardware module

50mm

DVS128 sensor chip

Reset button

Power switch

Basic operation

'lifficien? encoding
of local changes in
scene reflecfance

E | oy
g Same contrast,
] different illumination *Good ?empor‘ul
resolution (<10 us)
Time
OoNevens|| || I 0 Il |l ‘Large illumination

range (120 dB).

offevenss || |l Il Il Il |l

Microcontroller LPC4337 32bit ARM Cortex
* MO for event fetching & data transmission
* M4 available for custom application,
up to 204MHz, 136KB SRAM (104KB available)

Battery charging circuitry,
auxiliary LiPo battery connector

Auxiliary power input, 4-6V

Neuromorphic vision sensor(eDVS - embedded Dynamic Vision Sensor)

* individual sensor pixels react independent

ly to changes in light intensity

* individual sensor pixels spike asynchronously

* spikes (events) contains information about i

ts position, polarity, and a timestamp

HTTP://NEUROCOMPUTING.SYSTEMS
CST - EECS - KTH STOCKHOLM, SWEDEN

=~
» O

Wide urban road dataset (Munich, Germany) night-time

10
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Approach

* Sensing

\\' .

Neuromorphic event-based vnsnn for pedestrlan € eteetn
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Approach

* Algorithmics — Fast Objects More Objects (FOMO) ConvNet, Spiking Neural Network (SNN)

“‘® Pedestrian 97%
. Bike 2%
: 128x128 64 x 64
............................ ; S
Events density on
DVS events each kinematic
and ground component Rk
truth
MobileNetv2 Classifier

-> —5
3x3 Conv, RelU Max pool 2x2

12
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Demo - Spiking Neural Network (SNN)
ohm i

O brainchip EDGE IMPULSE

Inference speed: 24.72 ms
Power consumption/inference step: 6.06 mW

13
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Approach

e Algorithmics — Event-based Expectation Maximization (EM)

Neuromorphic Event-based Camera Input

a

UserFunction.cpp

AGessssssssssssscssssnsene

Skeleton Kinematics

R N
®ecesssesssscssssssssssccssssnnee

* essssesssssssscsssnnsened

° ° Event-based Expectation Maximization

Event membership allocation

Future positions: F(t + T) = F(t) + T(

Future angles: 0(t + T) = 0(t) + T6

Skeleton modelling

Adding a prediction model
o

=7¢ (for each body segment)
* Future centers:

ae+1) =[]
_ —Bpsin(6y)
Gt+T)=c(t) + T[ 0,c05(6p)
" —9',, sin(8p) — 6, sin(6,)
D=0 T[ 9,, cos(6p) + 9,.cos(8.)
* Future angles:
6(t+T)=0(t)+T6 (for each body segment)

Embedding physics in the Expectation Maximization

w'

* ehiggtgte .

%
3
&

—0fsin(0)
6 cos(6) )

e I 14

Likelihoods estimation
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Demo - Event-based Expectation Maximization (EM)

DV5 Tracker Control

Port: Disconnkt
Output File: dvstracker_rec_ 07_08_2023__18_12 47.dvs Record
Input File: Replay
Rate angle 0.02
Rate speed - 1
Replay speed # > +
Clesed-loop smaoothing Disabled
Time stamp analysis Timestamp plot

J DVS Events visualizer olix Tracker visualizer 0l x
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Performance

* Spiking Neural Network

Qualitative evaluation

Detection: 1 pedestrian and Detection: 1 pedestrian and
1 bicyclist car in background

Detection: 2 pedestrians

* For the accuracy evaluation of both the detection and tracking components of the system, we performed multiple
experiments in order to get a statistically valid analysis. For the quantitative evaluation, we executed the following
protocol: 1) Read relevant detection and tracking data from each of the experiments (i.e. N = 30 experiments); 2)
Perform statistical tests (i.e., a combination of omnibus ANOVA and posthoc pairwise T-test with a significance p =
0.05) and adjust the ranking of experiments depending on significance; 3) rank subsets of relevant metrics (i.e., the
metrics with a significant difference, e.g., the F1 score for detection and four others tracking specific metrics).

Quantitative evaluation

Dataset Background % Bicyclist % Pedestrian %
Dataset 1

(daytime)

Background 99.70 0.26 0.04
Bicyclist 12.10 87.90 0.00
Pedestrian 6.20 0.00 93.80
F1-Score 1.00 0.62 0.77
Dataset 2

(daytime)

Background 97.50 2.20 0.80
Bicyclist 10.10 89.90 0.00
Pedestrian 3.20 0.00 96.80
F1-Score 1.00 0.70 0.87
Dataset 3

(night)

Background 99.07 0.30 0.00
Bicyclist 21.10 78.00 0.90
Pedestrian 10.20 13.00 76.80
F1-Score 0.90 0.60 0.70

16
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Performance

* Event-based Expectation Maximization

Qualitative evaluation
Bicyclist tracking Pedestrian tracking

* For the accuracy evaluation of both the detection and tracking components of the system, we performed multiple
experiments in order to get a statistically valid analysis. For the quantitative evaluation, we executed the following
protocol: 1) Read relevant detection and tracking data from each of the experiments (i.e. N = 30 experiments); 2)
Perform statistical tests (i.e., a combination of omnibus ANOVA and posthoc pairwise T-test with a significance p =
0.05) and adjust the ranking of experiments depending on significance; 3) rank subsets of relevant metrics (i.e., the
metrics with a significant difference, e.g., the F1 score for detection and four others tracking specific metrics).

Quantitative evaluation

Dataset Bicyclist Pedestrian
Dataset 1

(daytime)

Track Matching Error(%) 13.70 10.10
Tracking Time Delay(s) 0.08 0.03
Tracking Detection Rate(%) 95.00 98.00
Tracking Completeness(s) 0.38 0.25
Dataset 2

(daytime)

Track Matching Error(%) 11.20 8.21
Tracking Time Delay(s) 0.07 0.02
Tracking Detection Rate(%) 97.00 99.00
Tracking Completeness(s) 0.38 0.25
Dataset 3

(night)

Track Matching Error(%) 23.30 20.10
Tracking Time Delay(s) 0.09 0.08
Tracking Detection Rate(%) 76.00 79.00
Tracking Completeness(s) 0.84 0.76

17
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Deployment evaluation

* Power consumption & weatherization analysis

Measurem.en_t setup . . Events visualizer on edge device
Camera pointing to a screen with recorded traffic data
Dataset Power(W) Latency(ms)
Dataset 1
(daytime)
7.58 14.32
Dataset 2
(daytime)
4.92 8.21
Dataset 3
(night)
5.65 24.62

Controlled oven

Edge device:
Brainchip Akida RaspberryPi board and
event-based neuromorphic camera

* For the accuracy evaluation of both the detection and tracking components of the system, we performed multiple
experiments in order to get a statistically valid analysis. For the quantitative evaluation, we executed the following
protocol: 1) Read relevant detection and tracking data from each of the experiments (i.e. N = 30 experiments); 2)
Perform statistical tests (i.e., a combination of omnibus ANOVA and posthoc pairwise T-test with a significance p =
0.05) and adjust the ranking of experiments depending on significance; 3) rank subsets of relevant metrics (i.e., the
metrics with a significant difference, e.g., the F1 score for detection and four others tracking specific metrics).

18
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Deployment evaluation

* Power consumption & weatherization anal

Measurement setup
Camera pointing to a screen with recorded traffic data

Dataset Power(W) Latency(ms)

~ Spinning fan (event-generator)

Dataset 1
(daytime)

7.58 14.32
Dataset 2
(daytime)

4.92 8.21
Dataset 3
(night)

5.65 24.62

Edge device:
Brainchip Akida RaspberryPi board and
event-based neuromorphic camera

e

* For the accuracy evaluation of both the detection and tracking components of the system, we performed multiple
experiments in order to get a statistically valid analysis. For the quantitative evaluation, we executed the following
protocol: 1) Read relevant detection and tracking data from each of the experiments (i.e. N = 30 experiments); 2)
Perform statistical tests (i.e., a combination of omnibus ANOVA and posthoc pairwise T-test with a significance p =
0.05) and adjust the ranking of experiments depending on significance; 3) rank subsets of relevant metrics (i.e., the
metrics with a significant difference, e.g., the F1 score for detection and four others tracking specific metrics).

19
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Complete BOM and costs

Bill of Materials (BOM) Single unit & suggested price for large quantities

= 4 4% OUTLET

Samsung SmartThings Vision

USB to miniUSB cable

Total

cable) — 26 $ (5m
long USB cable
with signal
amplifier)

long USB cable and also with signal amplification 5m long USB cable.

https://www.conrad.de/de/p/delock-usb-kabel-usb-3-2-gen1-usb-3-0-usb-3-
1-genl-ush-a-stecker-usbh-a-buchse-5-00-m-rot-schwarz-vergoldete-steckk
ontakte-ul-zertifiziert-82755-649883.html

Price per unit. When more units are bought a total price of approx. 226 $

for a price per unit 100 $ for Akida Chip, 50 $ for RaspberryPI boards,
50 $ for DVS camera, and long USB cable 26 $.

Component Price Notes —
— €71.74
I
. . . ] ] ] l [@+15 pes In stock - 2-3 working days delivery time
Price pro unit sold independently from the Brainschip Akida PClexpress
Raspberry Pl Compute Module 4 10 50 % board (see below).
Board with RPI CMA4Lite https://www.reichelt.de/de/de/raspberry-pi-compute-modul-4-io-board-rpi-c Source:
m4—i0-board-p290556_htm| https://www.proshop.nl/Smart-Home/Samsung-SmartThings-Vision/2786571
N . Price pro unit sold independently from the 10 board/carried board.
Brainchip Akida AKD1000 PClexpress 499 $ https://shop.brainchipinc.com/products/akida%E2%84%A2-development-kit “ inMation EN—
Board :
-pcie-board e e
Price per unit, with up to 50 $ if large quantities purchased. awm
IniVation Dynamic Vision Sensor 2500 % https://shop.inivation.com/collections/dvxplorer-lite-1/products/dvxplorer-lite -
-commercial-rate o=
e v s
1% (Im long USB Length of the cable depends on the gantry layout, we have tried with 1m O m

Source:
https://shop.inivation.com/collections/dvxplorer-lite-1

I Best price ~226$ |

I Worst price ~3000$ |

20



https://www.proshop.nl/Smart-Home/Samsung-SmartThings-Vision/2786571
https://shop.inivation.com/collections/dvxplorer-lite-1

ohm
Deliverables

e Datasets release e Code release EI e Solution release &

ox v D Model life-cycle and data analysis Minimal energy footprint
Location: https://goo.gl/maps/JaYGwaTaBHjSH6SLI P

+ 50 kmh (urban) speed limit

+ Near university campus with Pedestrians (people walking), Bicyclists (people biking,
scooting, rolling, etc.)

+ Ideal Operating Environment

= EDGE IMPULSE

Deployment
Akida Spiking Neural Networks in Event data

= Cristian Axenie / Project SPIDER - Team NeurOhm Brainchip Akida
S0 S Pt g g Do o i o

Deployment

- RaspberryPi Event-based Expectation Maximization
Dataset location 2 = )

+ 8lanes (4 per direction) wide street —
*  Location: https://goo.gl/maps/jar6AjysZiM2LP5S7 :
* 50 kmh (urban) speed limit

-
Near main train stations of the city and a location with Pedestrians (people
walking/running/jogging), Bicyclists (people biking, scooting, rolling, etc.)
— — Rt - —

ckar I

ettt | ot Jdevheyusso
sacker Output e @ntrackes_re_12_07_2023_09_42 06.dvs
eade Fites

Commonds] oW Pl n

owsypert

ovsBytests

Ovseventw Fte ansle

i

trowavs Replay

Dataset location 3
+ 6 lanes (3 per direction) wide street on bridge
« Location: https://goo.gl/maps/SEEsmpgmLPcD8IG7A
« 50 kmh (urban) speed limit
*« Near ring street of Munich and a location with Pedestrians (people
walking/running/jogging), Bicyclists (people biking, scooting, rolling, etc.)
+ Night time data acquisition

21
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Wrap-up

TinyML solution for supporting VisionZero pedestrian detection
* uses low-power neuromorphic sensing and processing
* employs only local processing (at the edge)

* provides good accuracy for robust visual detection under varying conditions

* Current development:

 HD Event-based camera (Prophesee EVK3)
STADT SCHWABACH

e Explore new computing platforms (Synsense Speck)

* Deployment at city-scale (Stadt Schwabach)

Die Goldschlagerstadt.

22
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Neuromorphic Event-based Camera Input

Event membership allocation

Adding a prediction model

. 4B
* 8 =77 (for each body segment)

* Future centers:

Gt +T) I::l

Gt+T)=c()+T

~8psin(6;)
Oycos(8;)

8, sin(8,) ~ 6, sin(6,)
@, cos(8,) + #,.cos(8,)

G+ =c (O)+T

* Future angles:
#(t+T)=86(t)+ 16 (for each body segment)

Embedding physics in the Expectation Maximization

Skeleton Kinematics

JPPG000000000000000000 0000

* 9000000000000 00000,

Dynamics

R RN R RN

Spatio-temporal

|
/)(\, 5*’
I’|
| a3 R Y A
| A Lt iy g L

Likelihoods estimation

SPICES Lab
0 h L i

Detection and tracking

Bicyclist detection

Pedestrian detection

Performance

t Traditional system
10 ms
Neuromorphic system
@ Ims

.

Detection speed
t Traditional system
300-400 W
~ Neuromorphic system
4 49-73W
= Energy budget i

Neuromorphic system

i 300 Bis

t (( )) Traditional system
I 30 MBls
()

Data communication



