
labs

Neuromorphic
Research
Community

An open-source software framework
for neuromorphic computing

Andreas Wild, Mathis Richter
Intel Neuromorphic Computing Lab

Open Neuromorphic
May 31, 2023

Neuromorphic Computing Lab

Legal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance,
course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

2

3For Engaged INRC Members and Affiliates OnlyNeuromorphic Computing Lab

What is Lava?
And why did Intel launch it?

4Neuromorphic Computing Lab

A new SW framework sparked by the arrival of Loihi 2

4

* specs and configuration details can be found at intel.com/neuromorphic

An open-source
software framework

for neuromorphic
computing

• Up to 10x faster
processing capability*

• Up to 60x more
inter-chip bandwidth*

• Up to 1 million neurons
with 15x greater resource
density*

• Programmable neurons

• Graded spikes

• 3-Factor learning

• 10G Ethernet I/F to host

5Neuromorphic Computing Lab

What is Lava?

• Full SW stack from runtime, to compiler, to
algorithm/application libraries

• Brain-inspired programming model for
heterogeneous HW

• Parallel & asynchronous

• Event-based computation/communication

• Seeded by Intel but open-source and
increasingly community-driven

5

Multi-Paradigm

Multi-Abstraction

Multi-Platform

Event-based
communication

6Neuromorphic Computing Lab

Why Lava?

• Converge neuromorphic SW
development towards open standard

• Make exotic neuromorphic systems
accessible to non-expert developers

• Accelerate adoption of neuromorphic
technologies

• Enable orders of magnitude gains in
compute efficiency

Users

Applications

Algorithms

Hardware
platforms &

systems

Transparent
benchmarks

Public
forums

7For Engaged INRC Members and Affiliates OnlyNeuromorphic Computing Lab

Capabilities
What you can do with Lava today

8Neuromorphic Computing Lab

Lava SW stack

Software Framework
github.com/lava-nc

API

Compiler

Runtime

Algorithm libraries

SW Stack

Applications, Products, Services

Heterogenous hardware interface

Event-based

Multi-Paradigm

Multi-Abstraction

Multi-Platform

Open-source

DL Optim VSA …

CPU Loihi GPU

…

▪ Cross-platform compiler/runtime

▪ Programming in Python & C

▪ “Arbitrary” neuron models via 𝝁Code programming

▪ Synaptic plasticity via 2/3-factor learning rules

▪ Power, performance, activity, memory profiler

▪ Lava-dl: Direct training and model deployment

▪ Lava-optim: Solvers for QUBO and QP problems

▪ Lava-dnf: Connectivity generators for attractor networks

▪ Comprehensive documentation and tutorials

Capabilities today

CPU/Loihi 2

CPU/Loihi 2

Loihi 2

CPU/Loihi2

Loihi 2

CPU/Loihi 2

CPU/Loihi 2

CPU/Loihi 2

CPU/Loihi 2

Platform

Standard Process Library

9Neuromorphic Computing Lab

Lava algorithm libraries
lava-dl

▪ Direct & HW-aware training
of event-based DNNs

▪ Rich neuron model library
(feed-forward & recurrent)

lava-dnf

▪ Design models with
attractor dynamics

▪ Stabilize temporal data

▪ Selective data processing

▪ Dynamic working memories

lava-optim

▪ Family of constraint
optimization solvers

▪ Today: QP, QUBO, LCA, BO

▪ Future: MPC, ILP, …

▪ Standalone use or as part of
AI applications

Future directions

▪ Signal processing

▪ Off-the-shelf apps (segmentation, tracking, keyword detection, …)

▪ Neural simulators (Brian2Lava, …)

▪ lava-io (sensor/actuator interfaces)

▪ lava-robotics (control, planning, physical simulator interfaces)

▪ lava-evolve (evolutionary training methods)

▪ lava-ui (graphical network creation, visualization, debugging)

lava-vsa (WIP)

▪ API for algebraic model
description for VSAs

▪ Library of data types and
operations (composition,
binding, factorization, …)

10Neuromorphic Computing Lab

Lava stack & open sourcing

Lava Loihi backend:
▪ Proprietary
▪ For INRC members or selected partners
▪ Developer documentation
▪ Mostly Python, some C

Lava Framework with CPU backend:
▪ Open-source
▪ Code distributed via GitHub
▪ End user documentation/tutorials
▪ Python

Loihi + NxCore:
▪ Proprietary
▪ For INRC members or selected partners
▪ Developer documentation/tutorials
▪ Python / C / C++

Framework components

Loihi

Process / Channel API

CPU …

Loihi
RuntimeSrv Py

RuntimeSrv
…

Runtime

NxCore

Nc/C-Proc
Compiler

Py-Proc
Compiler

…

Compiler

Executable

HW Backends

Nc/C-Proc
Behaviors

Py-Proc
Behaviors

…

Proc / Algo / App Libraries

Libs

API

Compiler

Runtime

HW

11For Engaged INRC Members and Affiliates OnlyNeuromorphic Computing Lab

Using Lava

12Neuromorphic Computing Lab

Basic Lava concepts

13Neuromorphic Computing Lab

Processes and channels
Lava’s fundamental building blocks

Process

Channel

Message
tokens Everything is a Process in Lava

14Neuromorphic Computing Lab

Example Process definition:

Processes

Processes provide implementation-agnostic API but separate behavioral implementation

Behavioral
implementation

defined separately…

All Processes derive
from AbstractProcess

__init__ defines
Vars and Ports

Additional API
methods

Tensor-valued Vars
and Ports

Tensor-valued Vars
and PortsInput Ports Output PortsInternal Vars

Logic

• Implementation-agnostic API
• InPorts/OutPorts for message-based

communication via channels
• Internal state & behavior

Process

15Neuromorphic Computing Lab

Processes and channels

Input Ports Output PortsInternal Vars
Logic

Process 1

Process 2

Process 3

Channel

Message
tokens

OutPort:

▪ send(msg)

InPort:
▪ msg = recv()
▪ msg = peek()
▪ has_msg = probe()

Processes communicate through channels via message tokens

Connecting processes:

16Neuromorphic Computing Lab

Behavioral models → ProcessModel

PyProcessModel CProcessModel

/

In
A

x

S
y

n

C
x

O
u

tA
x

NcProcessModel SubProcessModel

P

P

P

Process

Two classes of ProcModels: LeafProcModels vs. hierarchical SubProcModels

LeafProcessModels

P

P LP P

LP LPLPLP LP

Process Hierarchy:

17Neuromorphic Computing Lab

Examples

18Neuromorphic Computing Lab

Examples

• Tour through Lava
• lava / tutorials / end_to_end / tutorialX00_tour_through_lava.ipynb

• Low level tutorial library
• lava / tutorials / end_to_end , in_depth

• Lava-dl: PilotNet
• lava-dl / tutorials / lava / lib / dl / slayer / pilotnet / train.ipynb

• Lava-optimization: QUBO
• lava-optimization / tutorials / tutorial_02_solving_qubos.ipynb

19Neuromorphic Computing Lab

Current development highlights
New SW infrastructure and applications

20Neuromorphic Computing Lab

Latest Lava release

• Lava 0.7 – Minor feature additions (April 2023)
• Tutorial for performance profiling

• State probes

• Synaptic delays

• Bugfixes

• Preparations for larger feature release
• Sparse compression of connectivity

• Multiple dendritic accumulators

• Support for real-time vision capabilities

21Neuromorphic Computing Lab

General Loihi system architecture

Other
accelerators

(e.g. GPU)

Loihi subsystem
as accelerator

Peripheral interface (PCIe, Ethernet, USB, etc.)

Host CPU

DVS
camera

RealSense
3D

camera

Standard
camera

Vision sensors Compute acceleration
Optional direct asynchronous
hardware interface for latency &
power savings

System
memory

22Neuromorphic Computing Lab

High-speed IO infrastructure for Loihi 2

Neuromorphic
Algorithms

High
speed

IO

(Ethernet
PIO)

Event
based

camera

Live
visuali-
zation

Event
based

pre-
processing

RGB(D)
camera

Frame
based

pre-
processing

LoihiCPU

Prophesee
Inivation

Regular RGB
Realsense RGB-D

Tonic library

Reusable algorithmic capabilities
Models adaptable via retraining

IO bridge
Python
ROS

23Neuromorphic Computing Lab

DNN-based object detection & localization

Feedback-driven attention object detection

Audio denoising

Upcoming signal processing application examples

Optical flow with RF neurons

Timcheck et al, Intel DNS challenge, arXiv:2303.09503

Power-efficient,
compact denoising at
comparable quality

Optical Flow for Event-Cameras

G. Orchard et al, “Efficient Neuromorphic Signal Processing with Loihi 2”

10x reduction in ops

100x reduction in ops

https://arxiv.org/pdf/2303.09503.pdf

24Neuromorphic Computing Lab

New online/on-chip learning in Lava

• Learning supported on CPU/Loihi 2

• Local, 3F-online/on-chip learning

• Currently applied to:
• Continual Learning Prototype classifier

• Differentiable neural plasticity

NeuronsInputAxons Synapses

PreTraces PostTraces

𝒙𝟎, 𝒙𝟏, 𝒙𝟐 𝒚𝟎, 𝒚𝟏, 𝒚𝟐, 𝒚𝟑

𝒁 ∈ {𝒘, 𝒅, 𝒕}
Computational graph:

−𝑡𝐸) +

Synaptic state
variables

Dependency
operator/factor

Scaling
factor

Factor
Learning

epoch

Learning rules as sum-of-products:

25Neuromorphic Computing Lab

Generic Continual Learning Prototype classifier

Capabilities:
▪ Novelty detection
▪ One-shot learning
▪ Continual online learning
▪ Open-set recognition

Characteristics:
▪ Single-layer, local updates
▪ Interpretable
▪ Adjustable memory capacity
▪ Performant & energy efficient

Prototypes

Observed instances

New sample (+label)

Similar to existing
prototype?

Sample is labeled?

Prototype is labeled?

Correct prediction?

Allocate new
prototype

Positive
update

Negative
update

Positive
update

Assign
label to

prototype

Supervised
learning

Unsupervised
learning

New sample (+label)

W
e

ig
h

ts
P

ro
to

ty
p

e

n
e

u
ro

n
s

CLP state
machine

Prediction

Update

Allocate

Similarity

(unallocated) Assign

26Neuromorphic Computing Lab

Enhanced constraint optimization solvers and POCs

Capabilities:

Up to 105 × EDP gains on Loihi 2 vs. SotA CPU solver

Scalability from edge to cloud

Productive HW-agnostic API

Solving optimization problems with orders of magnitude gains in speed and power

Lava
Optimization

Library

QUBO CSP SAT (M)ILP

QP LASSO GraphSearch …

POCs /Apps
Model Predictive Control

Motion PlanningVehicle Routing

…

Loihi systems

Rack-scale unit for
large parallel

problem distribution

Small-scale board
for SWaP constraint

systems

Lava-Optimization Library

New/upcoming…

27Neuromorphic Computing Lab

Community projects

28Neuromorphic Computing Lab

LASSO Optimization
(Pacific Northwest National Lab)

• Objective: Optimize (hyper-) parameters of
functions that are non-convex or expensive to
evaluate (e.g., entire deep networks)

• Features: Supports three acquisition functions,
two acquisition estimators, flexible search
space specification

• Status: Solver supports CPU backend; Loihi 2
WIP (Github)

• Objective: Minimize 1
2

b0 − Φx
2

2
+ λ x

1
, with

known feature set Φ to get optimal sparse
representations x of input b0.

• Features: Uses locally competitive algorithm
for efficiency. Known to be up to 104 times
more energy efficient on Loihi than CPU.

• Status: Solver supports CPU & Loihi 2
backends (Github)

Bayesian Optimization
(George Mason University)

https://github.com/lava-nc/lava-optimization/tree/main/src/lava/lib/optimization/solvers/bayesian
https://github.com/lava-nc/lava-optimization/pull/200

29Neuromorphic Computing Lab

Model Predictive Control
(Lulea University)

• Objective: Accelerated combinatorial
optimization for problems of currently
intractable complexity at CERN

• Features: explores overall search space before
narrowing down towards global optimum

• Status: POC working on Loihi 2 backend;
benchmarking data collected from D-Wave

• Objective: Model predictive control for planning of
swarms of drones and quadrupeds

• Features: builds control algorithms on top of Lava’s
QP solver, derives stability and convergence
guarantees for the solvers under real-time latency
constraints. Build demos with physical robots.

• Status: stability analysis for PIPG/MPC algorithm,
control loop with Lava’s QP solver. CPU for now,
Loihi 2 WIP.

Simulated Annealing
(MIT, ORNL, U. Bonn)

Local
minima

Global
minima

Barrier to
local

search

30Neuromorphic Computing Lab

Differentiable plasticity
(RWTH Aachen, FZ Juelich, NRL)

• Objective: Brian 2 interface for Lava
to deploy brain-inspired algorithms

• Feature: Automatic conversion of
Brian models to Lava/Loihi 2 +
Models + Utilities

• Status: Solver supports CPU
backend; Loihi 2 WIP

• Objective: Backpropagating to learn
rapid real time weight adaptation on
chip

• Features: Gradient through learning
dynamics + Learned (via backprop)
learning rule coefficients

• Status: Lava-DL supports for DNNs
+ differentiable local learning rules

Brian2Lava
(U. Goettingen)

https://brian2lava.gitlab.io/

Learned learning
dynamics

https://brian2lava.gitlab.io/

31For Engaged INRC Members and Affiliates OnlyNeuromorphic Computing Lab

Discussion

https://intel-ncl.atlassian.net/wiki/spaces/INRC/overview

	Slide 1: An open-source software framework for neuromorphic computing
	Slide 2: Legal Information
	Slide 3: What is Lava?
	Slide 4: A new SW framework sparked by the arrival of Loihi 2
	Slide 5: What is Lava?
	Slide 6: Why Lava?
	Slide 7: Capabilities
	Slide 8: Lava SW stack
	Slide 9: Lava algorithm libraries
	Slide 10: Lava stack & open sourcing
	Slide 11: Using Lava
	Slide 12: Basic Lava concepts
	Slide 13: Processes and channels Lava’s fundamental building blocks
	Slide 14: Processes
	Slide 15: Processes and channels
	Slide 16: Behavioral models goes to ProcessModel
	Slide 17: Examples
	Slide 18: Examples
	Slide 19: Current development highlights
	Slide 20: Latest Lava release
	Slide 21: General Loihi system architecture
	Slide 22: High-speed IO infrastructure for Loihi 2
	Slide 23: Upcoming signal processing application examples
	Slide 24: New online/on-chip learning in Lava
	Slide 25: Generic Continual Learning Prototype classifier
	Slide 26: Enhanced constraint optimization solvers and POCs
	Slide 27: Community projects
	Slide 28: LASSO Optimization (Pacific Northwest National Lab)
	Slide 29: Model Predictive Control (Lulea University)
	Slide 30: Differentiable plasticity (RWTH Aachen, FZ Juelich, NRL)
	Slide 31: Discussion
	Slide 35

