Low-Power Spiking Neural Network Processing Systems for Extreme-Edge Applications

Join Dr. Federico Corradi as he explores low-power spiking neural network processing systems, offering insights into energy-efficient computing for extreme-edge applications.

About the Speakers

Federico Corradi

Federico Corradi

Assistant Professor in Electrical Engineering, researches neuromorphic computing, from models to microelectronic architectures for efficient deep learning.
Gregor Lenz

Gregor Lenz

Co-Founder & CTO at Neurobus, PhD in neuromorphic engineering. Focuses on event cameras, SNNs, and open-source software. Maintains Tonic & Expelliarmus.
Fabrizio Ottati

Fabrizio Ottati

AI/ML Processor Engineer at NXP, PhD from Politecnico di Torino. Focuses on event cameras, digital hardware, and deep learning. Maintains Tonic & Expelliarmus.
Social share preview for Low-power Spiking Neural Network Processing Systems for Extreme-Edge Applications

Upcoming Workshops

No workshops are currently scheduled. Check back soon for new events!

Are you an expert in a neuromorphic topic? We invite you to share your knowledge with our community. Hosting a workshop is a great way to engage with peers and share your work.

Inspired? Share your work.

Share your expertise with the community by speaking at a workshop, student talk, or hacking hour. It’s a great way to get feedback and help others learn.

Related Workshops

Tonic: Building the PyTorch Vision of Neuromorphic Data Loading

Tonic: Building the PyTorch Vision of Neuromorphic Data Loading

Discover how Tonic provides a PyTorch-compatible framework for loading and transforming neuromorphic datasets, making event-based data as accessible as traditional computer vision datasets.

PEPITA - A Forward-Forward Alternative to Backpropagation

PEPITA - A Forward-Forward Alternative to Backpropagation

Explore PEPITA, a forward-forward approach as an alternative to backpropagation, presented by Giorgia Dellaferrera. Learn about its advantages and implementation with PyTorch.

Towards Training Robust Computer Vision Models for Neuromorphic Hardware

Towards Training Robust Computer Vision Models for Neuromorphic Hardware

Join Gregor Lenz as he delves into the world of event cameras and spiking neural networks, exploring their potential for low-power applications on SynSense's Speck chip. Discover the challenges in data, training, and deployment stages. Don't miss this talk on training robust computer vision models for neuromorphic hardware.