Making Neuromorphic Computing Mainstream

Join us for a workshop with Timoleon Moraitis, research group leader in neuromorphic computing, at the interface of computational neuroscience with artificial intelligence.

Neuromorphic computing (NC) recently has been focusing on decreasing the energy consumption of artificial intelligence (AI) through efficient approximations of the more conventional methods. This talk argues that this approach might prevent NC from significantly impacting the mainstream market, because, on the one hand, the performance is then inherently limited to the conventional one at best, and, on the other hand, efficiency as a goal is not unique to NC.

Our recent series of results shows that carefully designed and suitably applied neuromorphic models are not only efficient, but also actually expand the capabilities of the state of the art (SOTA) in AI, surpassing it in accuracy and reward, while also improving speed of inference and learning, even in GPUs. These advantages are obtainable in tasks that were previously often out of reach for neuromorphic models.

The talk will present our work on short-term plasticity, meta-learning, Hebbian learning, self-supervised learning, and partly spiking neural networks. The talk will briefly mention the physical realizations of some of these mechanisms on extremely efficient neuromorphic hardware, namely memristive nanodevices. Thus, Dr Moraitis proposes, we as a field should not aim for efficiency-performance trade-offs, but rather for biological mechanisms that improve SOTA performance – and are also efficient. This strategy has the potential to bring NC to the mainstream.

Social share preview for Making Neuromorphic Computing Mainstream

Upcoming Workshops

No workshops are currently scheduled. Check back soon for new events!

Are you an expert in a neuromorphic topic? We invite you to share your knowledge with our community. Hosting a workshop is a great way to engage with peers and share your work.

About the Speakers

Timoleon Moraitis

Timoleon Moraitis

Leads research in neuromorphic computing, focusing on models that surpass conventional AI in performance and efficiency. Formerly at Huawei & IBM Research.
Fabrizio Ottati

Fabrizio Ottati

AI/ML Processor Engineer at NXP, PhD from Politecnico di Torino. Focuses on event cameras, digital hardware, and deep learning. Maintains Tonic & Expelliarmus.

Inspired? Share your work.

Share your expertise with the community by speaking at a workshop, student talk, or hacking hour. It’s a great way to get feedback and help others learn.

Related Workshops

What's Catching Your Eye? The Visual Attention Mechanism

What's Catching Your Eye? The Visual Attention Mechanism

Delve into the world of visual attention mechanisms with Giulia D'Angelo as she explores the interplay of bottom-up and top-down processes, offering insights into bio-inspired models for enhanced robotic perception and interaction.

Spyx Hackathon: Speeding up Neuromorphic Computing

Spyx Hackathon: Speeding up Neuromorphic Computing

Explore the power of Spyx in a hands-on hackathon session and dive into the world of neuromorphic frameworks with Kade Heckel.

IBM NorthPole - Neural inference at the frontier of energy, space, and time

IBM NorthPole - Neural inference at the frontier of energy, space, and time

NorthPole outperforms all prevalent architectures, even those that use more-advanced technology processes.