Making Neuromorphic Computing Mainstream

Join us for a workshop with Timoleon Moraitis, research group leader in neuromorphic computing, at the interface of computational neuroscience with artificial intelligence.

  • Timoleon Moraitis
  • November 16, 2023

Neuromorphic computing (NC) recently has been focusing on decreasing the energy consumption of artificial intelligence (AI) through efficient approximations of the more conventional methods. This talk argues that this approach might prevent NC from significantly impacting the mainstream market, because, on the one hand, the performance is then inherently limited to the conventional one at best, and, on the other hand, efficiency as a goal is not unique to NC.

Our recent series of results shows that carefully designed and suitably applied neuromorphic models are not only efficient, but also actually expand the capabilities of the state of the art (SOTA) in AI, surpassing it in accuracy and reward, while also improving speed of inference and learning, even in GPUs. These advantages are obtainable in tasks that were previously often out of reach for neuromorphic models.

The talk will present our work on short-term plasticity, meta-learning, Hebbian learning, self-supervised learning, and partly spiking neural networks. The talk will briefly mention the physical realizations of some of these mechanisms on extremely efficient neuromorphic hardware, namely memristive nanodevices. Thus, Dr Moraitis proposes, we as a field should not aim for efficiency-performance trade-offs, but rather for biological mechanisms that improve SOTA performance – and are also efficient. This strategy has the potential to bring NC to the mainstream.

~ Share this Site ~

Upcoming Workshops

No upcoming events.

Making Neuromorphic Computing Mainstream

About the Speaker

Dr Timoleon Moraitis has lately focused on demonstrating that the potential of neuromorphic computing extends beyond efficiency, into capabilities and performance that surpass the state of the art in conventional AI. His work with his team ranges from computational neuroscience to deep learning, from theoretical modelling to neuromorphic hardware emulation in nanodevices, and from academic publications to some of the first neuromorphic products in the market. Most recently he led Huawei’s neuromorphic computing group in Zurich, following a position at IBM Research – Zurich. Earlier, during his PhD studies at the Institute of Neuroinformatics (University of Zurich and ETH Zurich), his work included machine learning models of the sensorimotor system, implementation of neuromorphic brain-machine interfaces, surgery and electrophysiology experiments on rats, psychophysics in humans, as well as configuring and using spiking neuromorphic processors.

Hybrid Learning for Event-based Visual Motion Detection and Tracking of Pedestrians

Hybrid Learning for Event-based Visual Motion Detection and Tracking of Pedestrians

  • Cristian Axenie
  • 2024, January 15

Revolutionize traffic safety with neuromorphic visual sensing. Explore award-winning solutions for pedestrian detection and tracking, emphasizing sustainability and city-level deployment. Join Dr. Cristian Axenie in this groundbreaking AI exploration

Accelerating Inference and Training at the Edge

Accelerating Inference and Training at the Edge

  • Maxence Ernoult
  • 2024, March 5

Join us for a talk by Maxence Ernoult, Research Scientist at Rain, on accelerating inference and training at the edge.

Spyx Hackathon: Speeding up Neuromorphic Computing

Spyx Hackathon: Speeding up Neuromorphic Computing

  • Kade Heckel
  • 2023, December 13

Explore the power of Spyx in a hands-on hackathon session and dive into the world of neuromorphic frameworks with Kade Heckel.