PEPITA - A Forward-Forward Alternative to Backpropagation

Explore PEPITA, a forward-forward approach as an alternative to backpropagation, presented by Giorgia Dellaferrera. Learn about its advantages and implementation with PyTorch.

Social share preview for PEPITA - A Forward-Forward Alternative to Backpropagation

Upcoming Workshops

No workshops are currently scheduled. Check back soon for new events!

Are you an expert in a neuromorphic topic? We invite you to share your knowledge with our community. Hosting a workshop is a great way to engage with peers and share your work.

About the Speakers

Giorgia Dellaferrera

Giorgia Dellaferrera

PhD in computational neuroscience (ETH Zurich/IBM). Researches interplay of neuroscience & AI, focusing on learning mechanisms in brains and machines.
Jason Eshraghian

Jason Eshraghian

Assistant Professor at UC Santa Cruz, leading UCSC Neuromorphic Computing Group. Focuses on brain-inspired circuits for AI & SNNs. Maintainer of snnTorch.

Inspired? Share your work.

Share your expertise with the community by speaking at a workshop, student talk, or hacking hour. It’s a great way to get feedback and help others learn.

Related Workshops

Hands-On with Sinabs and Speck

Hands-On with Sinabs and Speck

Join Gregor Lenz for an engaging hands-on session featuring Sinabs and Speck. Explore the world of neuromorphic engineering and spike-based machine learning.

Towards Training Robust Computer Vision Models for Neuromorphic Hardware

Towards Training Robust Computer Vision Models for Neuromorphic Hardware

Join Gregor Lenz as he delves into the world of event cameras and spiking neural networks, exploring their potential for low-power applications on SynSense's Speck chip. Discover the challenges in data, training, and deployment stages. Don't miss this talk on training robust computer vision models for neuromorphic hardware.

What's Catching Your Eye? The Visual Attention Mechanism

What's Catching Your Eye? The Visual Attention Mechanism

Delve into the world of visual attention mechanisms with Giulia D'Angelo as she explores the interplay of bottom-up and top-down processes, offering insights into bio-inspired models for enhanced robotic perception and interaction.