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Neuromorphic computing today
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Computational Primitives: 
Spiking Neurons (vertices / nodes)
Synapses (connections / edges)

Programmable as arbitrary graphs
• Edges: Directed and weighted
• Nodes: Threshold gate logic + time 
• Artificial neural networks are a special 

case
• Programmability, theoretical, 

analysis and software are open 
research questions

Neural Logic Core
~103 – 104 neurons 

105 -106 edges

Neural Chip
~101 - 102 cores
104 -106 neurons

Neural System
~102 - 104 chips
106 -109 neurons



Sandia has some of the largest spiking neuromorphic systems
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Neuromorphic hardware jumped ahead of the rest of the stack
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We need

❖ Driving Applications

❖ Systems Interface

❖ Software and Programming Paradigm

❖ Theoretical Framework



Neuromorphic Hardware

Artificial Neural Networks

A quick aside: most neuromorphic hardware is not designed for 
artificial neural networks
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Spiking neurons

Continuous neurons Linear algebra-like networks

Arbitrary connectivity

• Continual learning 
integrated into 
operation

• Inherently temporal 
• Dynamical tasks?

• Distinct training and 
inference modes

• Time is largely 
avoided

• Computer vision and 
natural language 
processing



https://openai.com/research/overview Intel Loihi Chip

Modern Artificial Intelligence The Brain Neuromorphic Hardware

All of these have a lot of neurons…
… clearly these are not all equivalent in what they do



As a community, we all mean different things when we talk about 
neural algorithms… 



Spiking neural algorithms
• Hand-crafted circuits of spiking neurons
• Model of parallel computation
• Energy efficiency through event-driven 

communication and high fan-in logic

Artificial neural networks
• Generic layers of non-linear nodes
• SGD optimization of weights
• Powerful machine learning capabilities 

through learning sequential non-linear 
mappings and function approximation

Neuroscience-constrained algorithms
• Circuit architecture based on local and 

regional neural connectivity
• Computation incorporates broad 

range of neural plasticity and 
dynamics

• Generally still unexplored from 
algorithms perspective

Neural
Algorithms

Different classes of neural algorithms have received varied 
attention



Realized Features of Brain 
Inspiration in 

Neuromorphic Hardware

• Event-driven communication 

• Graph based connectivity

• Processing in Memory

• In situ learning 

• Analog computation

• Post-Moore’s Law Devices

• Ubiquitous stochasticity

… meanwhile, hardware is rapidly evolving and scaling
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Analog 
computing!

Spiking!

High fan-in 
connectivity! 

Learning!

Stochasticity!

Realized Today 
for 10x-100x 
energy savings

Active Research 
for additional 
power savings



Neural
Algorithms

Rapidly evolving and diverse set of algorithms

Rapidly evolving and diverse set of hardware

How do we work across both of these?





Fugu aims to bring neuromorphic solutions to general computing 
world
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Neuromorphic 
Experts

Wants to program with libraries

Neural Algorithm 
Developers

Typical computer 
scientists

Wants to program with neurons

Wants to program hardware directly





What is Fugu? And Why?
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Neuromorphic Challenges

• Neuromorphic platforms remain a challenge to program

• Lack of  interoperability between research outputs

Fugu

• Open-source library for spiking neural networks

• A unified, (mostly) hardware agnostic, framework to enable 
neuromorphic algorithm development

• Bricks: roughly represents a function

• Scaffolds: represents an application 

• Design goals: easy-to-use, lower barrier of  entry, improved code 
efficiency and re-use

• In active development

The name Fugu is inspired by the Japanese word for pufferfish; which, of course, have spikes. Furthermore, Fugu is considered a culinary delicacy due to the presence of low levels of the neurotoxin 
tetrodotoxin, or TTX, which has significant value in studying the electrophysiology mechanisms underlying biological action potentials.



What Fugu is *not*

➢ Fugu is *not* a deep learning or 
spiking neural network training tool
➢Fugu *can* leverage outputs of SNN 

tools as bricks in a computation

➢ Fugu is *not* a neurobiology 
modeling tool
➢Fugu *can* leverage outputs of SNN 

tools as bricks in a computation

➢ Fugu is *not* a replacement for 
hardware-specific software 
infrastructure (e.g., Lava)

➢Fugu *IS* an intermediate 
representation that allows 
development of explicit scalable, 
parallelizable algorithms for 
neuromorphic systems

























Okay… so what exactly is a brick?

…some intuition using a simple arithmetic example

ICRC, 2021



Little Endian in Time coding scheme

Single neuron encodes binary bits in time starting with least significant bit and moving up

Benefits
❖ Natively handles variable length numbers
❖ Well-suited for binary arithmetic 
❖ Very efficient for neuron count and overall spike counts

Drawbacks
❖ Requires cautious “bookkeeping” and/or external halt signal
❖ Computing in time adds a latency to calculations 



Circuit for binary streaming adder
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Example Fugu Code for binary streaming adder
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Example Fugu Code for binary streaming adder
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Growing suite of neuromorphic arithmetic logic

Adder: y = A + B

Multiply: y = a*x

Shift multiplier: y = 2^d * A

Inverter:   y = !x

Spiking 
Binary 
Adder

Check 
Carry Bit

Inv()

delay

y

A

B

Subtractor:   y = A - B



Fibonacci Example



Fibonacci Example

https://github.com/sandialabs/Fugu/blo
b/main/examples/notebooks/Fibonacci_
Example.ipynb



Fibonacci Example

https://github.com/sandialabs/Fugu/blo
b/main/examples/notebooks/Fibonacci_
Example.ipynb



Fibonacci Example

https://github.com/sandialabs/Fugu/blo
b/main/examples/notebooks/Fibonacci_
Example.ipynb



























So what about these other cognitive and AI applications of 
neuromorphic?



Simulation Tool for Asynchronous Cortical Streams 
(STACS)
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▪ STACS is a large-scale spiking neural network simulator built on top 
of the Charm++ parallel programming framework (workload 
decomposed as parallel objects)

▪ Network models are represented as a directed graph, and 
neuron and synapse model dynamics are formulated as 
stochastic differential equations:

▪ 𝑑𝑥 = 𝑓 𝑥 𝑑𝑡 + ∑𝑖=1
𝑛 𝑔𝑖 𝑥 𝑑𝑁𝑖 : time-driven computation, event-driven

communication

▪ Simulation is supported by partition-based data structures, and 
serialized through SNN extensions to the distributed 
compressed sparse row (SNN-dCSR) data format

▪ These facilitate network generation, graph-aware partitioning, 
checkpoint/restart, scalable multicast communication, and tool 
interoperability

▪ STACS may be used as a standalone simulator,
as a backend to tools like N2A or Fugu, and also
interface with external devices through YARP

▪ Available at: https://github.com/sandialabs/STACS
Simulation of a biologically inspired 

spiking neural network of about 
12M neurons and 70B synapses

https://github.com/sandialabs/STACS


Example 3-way partitioning of a simple network with 12 
vertices and 21 directed edges using the SNN-dCSR

format. Directed edges with associated state are bolded.

STACS supports network generation 
over spatially-defined topologies. 

Here, a visualization of a 6000 
neuron network over a sphere.

The SNN-dCSR format supports network (re)partitioning, 
making it suitable for computational parallelism, whether 

its target platform is between nodes on an HPC system 
or between chips on neuromorphic hardware.

Selected features of STACS



Selected features of STACS
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Network snapshots, state probes, and spike events 
can be recorded from large-scale and long-running 

simulations for sophisticated offline analysis. 
Computing the separability of spike rates between 
contexts (left). Identifying recurrent causal activity 

patterns through a combination of network 
structure and spiking activity (below).

Time (s)

Covariance between Contexts

Spike Rates

Spike Raster

Graphical Neural Activity Threads (GNATs)



Selected features of STACS
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STACS supports user-defined model dynamics 
(structured as SDEs through an abstract class), 

which enables algorithm and model exploration, 
or the emulation of hardware implementations.

STACS also supports interfacing with 
devices through YARP, which enables 
closed-loop system exploration and 

external communication and control.



Where STACS sits within the neuromorphic ecosystem
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▪ Description Languages
▪ PyNN, NeuroML, NineML, etc.

▪ Software Frameworks

▪ N2A, Fugu, Lava, Nengo, etc.

▪ Network Simulators

▪ NEST, NEURON, Brian, GeNN, etc.

▪ Data Formats

▪ NIR, SONATA, NetworkX, GEXF, etc.

▪ Hardware Platforms

▪ Loihi, SpiNNaker, BrainScaleS, etc.

STACS is primarily a spiking 
neural network simulator

STACS is able to interoperate with software 
frameworks such as N2A or Fugu through:
▪ Translating between higher-level network 

description languages ( N2A → YAML )
▪ As a simulation backend for instantiated 

networks ( Fugu → NetworkX → SNN-dCSR )

The partition-based SNN-dCSR data format 
supports external tool interoperability:
▪ Such as graph partitioners (e.g. ParMETIS), 

and network analysis (e.g. GNATFinder)
▪ It also provides a path toward mapping 

instantiated networks to different 
neuromorphic hardware platforms
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N2a
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Sandia’s attempt to answer the above questions.

• “Neurons to Algorithms”
• In development since 2011
• Open source, available on Github

Main features

• Object-oriented, declarative language
• Integration with Git for team-based modeling
• Runs jobs on supercomputers
• Parameter sweeps and optimization

Needs

• Better supercomputer backend
• More support for model-exchange formats

https://github.com/sandialabs/n
2a

Please join us in 
building this tool!

https://github.com/sandialabs/n2a
https://github.com/sandialabs/n2a
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Inheritance
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Blue is inherited
Black is local

Sub-Parts

• The part set illustrated here is based on the 
NeuroML schema and its LEMS code.

• N2A can read and write NeuroML/LEMS models.
• You can define any part set you wish, even in a 

domain other than neuroscience.
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• Dynamical system modeling language and tool
• Simulator agnostic
• Enables teams of neuroscientists to collaborate on large-scale / complex models

• Parts defined with simple set of equations. No need to program.
• Build complex structures from simple structures by reusing parts.

• Publicly available: https://github.com/sandialabs/n2a
• Continuous development, supported by major national laboratory

Summary

https://github.com/frothga/n2a
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Collaboration

github.com

DorothyCecilia

BorisAaron

• Repository – collection of Parts, version-controlled with git
• Each user can have several repositories
• Each repo can be linked with an upstream git server
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Collaboration

• UI for managing repositories
• Merges Git pulls correctly, preserving local work 



So what about these other cognitive and AI applications of 
neuromorphic?



Thank You!
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