Programming Scalable
Neuromorphic Algorithms
with Fugu

Brad Aimone

Center for Computing Research
Sandia National Laboratories

jbaimon@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering

oooooooooooooooooooo , a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National AND2023-14932PE
uuuuuuuuuuuuuuuuuuuu istration under contract DE-NA0003525. 5 023 93

/4 Thank You!
/

s’

Fugu
o William Severa, Craig Vineyard, Srideep
Musuvathy, Yang Ho, Leah Reeder, Michael
Krygier, Fred Rothganger, Suma Cardwell, Ingrid
Lane, Aaron Hill, Zubin Kane, Sarah Luca, ...

STACS, N2A, and Neural Simulations
o Felix Wang, Fred Rothganger, Brad Theilman, ...

Broader Sandia Neuromorphic Algorithms
Team

o Darby Smith, Ojas Parekh, Rich Lehoucq, Frances
Chance, Corinne Teeter, Mark Plagge, Ryan
Dellana, Shashank Misra, Conrad James, Chris
Allemang, Brady Taylor, Yipu Wang, William
Chapman, Efrain Gonzalez, James Boyle, Cale
Crowder, Clarissa Reyes, Cindy Phillips, Ali Pinar,

U.S. DEPARTMENT OF Oﬂ-’lce Of \

. | Sandia e
ENERGY Science Joaimon@sandia.gov @tatﬂ?’g%“es Q ‘

N AR A g

Algorithm IR R
Capabilities

Hardware
Efficiency

Deep
Learning

Spiking Truly Brain-Derived
Algorithms Algorithms

Algorithms

Programmable
Hardware

Soiki Hybrid Unknown Future
GPUs \ PIxINg " Analog-Digital (3D Architecture,
euromorphic Neuromorphic Novel Devices, ...)

Aimone |B, Advanced Intelligent Systems, 2023

/" Neuromorphic computing today

/

3 .—» Neural Chip
ol 11120 ~10" - 102 cores
| . 104-10° neurons
- “’b-*—\—’.—’/ W S . -
ol . / 1\ ~ :

M!)/H/N\
s ||| -

Computational Primitives:

Spiking Neurons (vertices / nodes)

Synapses (connections / edges) Neural System

~102 - 104 chips

Programmable as arbitrary graphs 106-10° neurons

« Edges: Directed and weighted

* Nodes: Threshold gate logic + time

* Artificial neural networks are a special
case

« Programmability, theoretical,
analysis and software are open
research questions

.

/" Sandia has some of the largest spiking neuromorphic systems

‘2
4 . - Loihi Pohoiki SpiNNaker 2
1 09 SpiNNaker 1 million core Springs (768 chips) ‘ expected
University of Manchester Intel Loihi 2 system
8 TrueNorth 64-chip ‘ ‘ Sandia (expected)
10 TrueNorth 16-chip “/RE Darwin Loihi2 Hala Point (128 chips) Sandia
2 107 Livermore Zhejiang Loihi Pohoiki Springs (384 chips)
2 . Sandia
> TrueNorth 1-chip
Z 6 Livermore ‘ Loihi Nahuku (8-chips)
kS 10 Sandia
; O
0
5 10°
pd

SpiNNaker 48-chip
Sandia

2014 2016 2018 2020 2022 2024

@ =0
— =i
-~ — . We need
e A % Driving Applications
[3 , < Systems Interface

7 < % Software and Programming Paradigm

-o- % Theoretical Framework

I
— r’
.I T N\

Wa &
’
-—

Bo
AT
rs
s’ /
e

1
i — Output
0

function

Continuous neurons

000000000

Linear algebra-like networks

A quick aside: most neuromorphic hardware is not designed for
artificial neural networks

<4

Distinct training and
inference modes

« Time s largely

avoided

Computer vision and
natural language
processing

" 4

y
4

/ Modern Artificial Intelligence The Brain Neuromorphic Hardware

https.//openai.com/research/overview Intel Loihi Chip

All of these have a lot of neurons...
.. Clearly these are not all equivalent in what they do

// As a community, we all mean different things when we talk about
neural algorithms...

o

WHETSTONE

(e]e]eje]e] lelelele)

4 1 q 4

// Different classes of neural algorithms have received varied
| attention

/ Artificial neural networks
mm °* Genericlayers of non-linear nodes

‘ 4= o s 8% « SGD optimization of weights
a---‘f‘f‘.él Powerful machine learning capabilities
- through learning sequential non-linear
mappings and function approximation

Spiking neural algorithms AL AH A
- . Model of paralicl compuratione - ? g
georithiy « Energy efficiency through event-driven
communication and high fan-in logic ’

fi—

Neuroscience-constrained algorithms
« Circuit architecture based on local and
ﬁ regional neural connectivity
Wi .. < Computation incorporates broad
‘ ‘ range of neural plasticity and
dynamics
« Generally still unexplored from

algorithms perspective ‘

/ ... meanwhile, hardware is rapidly evolving and scaling

/,,

High fan m
Analog
computing! 4'\5 \ Realized TOday
Learning for 10x-100x

energy savings

Active Research
for additional
power savings

icoricnil o Rapidly evolving and diverse set of algorithms

=
o
®
é
o

How do we work across both of these?

Rapidly evolving and diverse set of hardware

AT Typ [Cre 12

Libeary oy Soudans (< 70
4 B0 GaA

@t\-ﬂ-‘) Apta

— “ u (=
/L K / [inker ma /
Q) Ay conet
Tremed:# time
&{M‘h (i Wates Torh) =
frrogh dest=
\ \ Grogh e % W, dekaret2
N Nehook X(2)
J Tt
ConppLe&%Ig"“* \ R

PR
o [

Fugu aims to bring neuromorphic solutions to general computing
world

Typical computer

scientists Wants to program with libraries

Neural Algorithm

Wants to program with neurons
Developers

Neuromorphic

Wants to program hardware directl
Experts Pros y

> &

How to Interact with Fugu

4

7 We are always looking for collaborators! If you use Fugu for research,
g please cite our ICONS paper:
 End User - Works with bricks, scaffolds and backends Aimone, Severa, Vineyard.
. . Composing neural algorithms
* Should clone Fugu repository and import fugu. with Fugu, 2019.

* New code should go in its own project-specific repository
» Brick/Backend Builder - Creates new Bricks/Backends for End User

 If the code is generally applicable, create a feature branch from Fugu, write code, merge request.
Recommended to e-mail wg-fugu@sandia.gov to coordinate and collaborate first.

* If the code is project-specific or sensitive, create your own repository and inherit from Brick /
Backend

* Core Fugu - Modifies Core parts of Fugu

* Create a feature branch from Fugu, create code, merge request. Recommended to e-mail wg-
fugu@sandia.gov to coordinate and collaborate first.

* Large suggestions/collaborations will require discussions with wg-fugu@sandia.gov

/" What is Fugu? And Why?
/

s’

‘&
Neuromorphic Challenges

* Neuromorphic platforms remain a challenge to program
* Lack of interoperability between research outputs

Fugu Brick A
* Open-source library for spiking neural networks AN
. . Brick B Brick C
* A unified, (mostly) hardware agnostic, framework to enable <
neuromorphic algorithm development Brick D
* Bricks: roughly represents a function _ W,
* Scaffolds: represents an application
* Design goals: easy-to-use, lower barrier of entry, improved code *
efficiency and re-use S

* In active development

The name Fugu is inspired by the Japanese word for pufferfish; which, of course, have spikes. Furthermore, Fugu is considered a culinary delicacy due to the presence of low levels of the neurotoxin
tetrodotoxin, or TTX, which has significant value in studying the electrophysiology mechanisms underlying biological action potentials.

4

s’

‘4

/" What Fugu is *not*

» Fugu is *not™ a deep learning or
spiking neural network training tool

»Fugu *can* leverage outputs of SNN
tools as bricks in a’computation

» Fugu is *not* a neurobiology
modelmg tool

»Fugu *can* leverage outputs of SNN
tools as bricks in a‘computation

» Fugu is *not* a replacement for
hardware-specific software
infrastructure (e.g., Lava)

»Fugu *IS* an intermediate
representation that allows
development of explicit scalable,
parallelizable algorithms for
neuromorphic systems

al neural networks

optimization of weights
erful machine learning
apabilities through learning
sequential non-linear mappings
and function approximation

HRH=H

o

Spiking neural algorithms u//ﬂw,)[,ﬂ_,)[/l
* Hand-crafted circuits of . . .
spiking neurons C N
Neural + Model of parallel computation \ N <
Algorithms + Energy efficiency through T P

event-driven communication '
and high fan-in logic E

Neuroscience-constrained

ircuit architecture based on
&l and regional neural
ectivity

Generally still unexplored from
algorithms perspective

|
How Fugu Works
Bricks are similar to

Scaffold functions Bricks
Sequence Classifier or dataflow blocks

=

Four main
steps for
Fugu

=) = &=

|

How Fugu Works

Scaffold Bricks
Sequence Classifier

Bricks
compose to
become a
Scaffold

Fugu manages
links between

Because of bricks
composability,
when the
algorithm
changes, you
just change the
Scaffold

|

How Fugu Works

Scaffolds are scaff()ld Bricks

directed, L
acyclicand | Sequence Classifier
can represent
complex
algorithms

Because of
composability,
when the
algorithm
changes, you
just change the
Scaffold

|

How Fugu Works

Scaffolds are Scaffold Bricks

directed, .

acyclicand | Sequence Classifier

can represent
complex

algorithms]>

|

How Fugu Works Fugu also adds in some
special neurons to help)

scaffOId control information flow BrICkS

Sequence Classifier —V

At Build, the Bricks provide
instructions on how to build
a spiking neural network

|

How Fugu Works Fugu also adds in some
special neurons to help)

scaﬂOId control information flow BrICkS

Sequence Classifier —V

\

This Intermediate

At Build, the Bricks provide Representation (IR) is

instructions on how to build platform-agnostic
a spiking neural network

|

How Fugu Works

Scaffold Bricks
Sequence Classifier

—
Bricks are
scalable, so if
you dimension
changes, so
will your IR

network

|

How Fugu Works

Scaffold Bricks
Sequence Classifier

—
Bricks are
scalable, so if
you dimension
changes, so
will your IR

network

How Fugu Works

Scaffold Bricks
Sequence Classifier

At Compile, the IR
becomes platform-specific

|

How Fugu Works

Scaffold Bricks
Sequence Classifier

Spiking inputs
& outputs are
all handled by
Fugu when run

Output Spikes
Il J
111

\
Input Spikes #

R

Lastly, the
network is
moved to
hardware for
execution

How Fugu Works

Scaffold Bricks
Sequence Classifier

/ Okay... so what exactly is a brick?

...some intuition using a simple arithmetic example

Spiking Neural Streaming Binary Arithmetic

James B. Aimone, Aaron J. Hill, William M. Severa, & Craig M. Vineyard
Sandia National Laboratories
Alboquergue, New Mexico
Email: jbaimon @ sandia.gov

Abstract—Bookan functions and binary arithmetic qennnu

L INTRODUCTION & BACKGROUND

Fundamental to many paradigms of computing are Boolean
functions and arithmetic operations. These core concepts can

spiking neural nctworks can be loveraged 1o enable compasi-
tionality for more complex computations. Alernatively, if the
highly optimized canonical approaches were used 1o compuke
fundamental arithmetic operations which integrate neural sub-
functions, there is a cast 1o convert in and out of neural circuity
analogous to paying for analog to digital comersions.
1. FuGu

As a means of showing compositionality and scalability of
spiking algorithms, we use the Fugu framework to repeesent
the neural circuits prescated here [9]. Whike implementation
details vary hased on NMC hardware, Fugu is a high-level
framework specifically designed for developing spiking cir-
cuits in terms of computation graphs. Accordingly, with a base
leaky-integrate-and fire (LIF) neuron model at its core, neural
circuits ane built as ‘bricks’. These foundational computations
are then combined and composed as ‘scaffolds’ to construct
langer computations. This allows us 10 describe the streaming
binary arithmetic circuits in terms of neural features common

then be composed to build arbitrarily complex
and st a for comparing and
understanding computability. In pursuing an understanding of
what computations neural circuits can perform, prior work has
explored universal function approximation as well as Turing
p 111, [2). Accordingly. with that foundation in
hand it is straightforward that spiking neurons can be used
10 compute arithmetic functions. However, here we not caly
provide several fundamental arithmetic computations as spik-
ing neural streaming circuits, but use them as a means of
understanding and enabling neuromorphic computing (NMC).
Accordingly, here we present a set of streaming neural binary
circuits implemented in Fugu, a ncural algorithm composition
framework, showing how more complex functions can be built
upon operations such as addition and subtraction leading 1o
multiplication
Classic computational paradigms are incredibly cfficient at
performing these base building blocks of numerical com-
putation, having been optimized for decades to minimize
the computational kemel and maximize scalability [3], [4].
Exacting these computations in neurons both shows potential
for how future, device breakthroughs in the development of
neuromorphic hardware can enable classic numcrical compu-
tations. And this work has been inspired partly by previous
approaches for impkementing logic and arithmetic in spiking
networks, such as [S], [6], [7). [8]. But furthermore, this
exploration also cxamines how the computational flexibility in

10 most NMC rather than platform specific de-
signs.

In addition to arch] the
concept of Fugu not only facilitates a hicrarchical approach
to functionality development but also cnables adding pre
and post provessing operations 1o overarching neural circuits
Such properties position Fugu 10 belp explore under what
parameterization or scake a neural approsch may offer an
advantage. For example, prior work has analyzed neural al-
gonithms for computational kemels like sorting, optimization,
and graph analytics identifying different regions in which a
neural advantage exists accounting for neural circuit setup,
timing, or other factors [10]. [11]. [12], [13]

1L SPIKING BINARY ARITHMETIC

An open research question in neuroscience and neuro-
morphic computing is how 1o encode information [14]. The
transmission of spikes can comveys information in their timing,
cnabling compkex spatial temporal representations. However,
here we do not exploit any novel spike encoding represcn-
tations but rather use a binary represcntation of numbers
which starts streaming the keast significant bit first to the
most significant bit last Neuroas can be used to represent
many different coding schemes, but the main advantages of
this “little-codian™ temporal binary representation arc that:

+ One neuron is required per variable represented, with

timesteps roquired for a k-bit number.

ICRC, 2021

/" Little Endian in Time coding scheme
/

s’

/

13=1101
/ \ ‘ |‘| |‘|‘|

Most significant bit Least significant bit Time

Single neuron encodes binary bits in time starting with least significant bit and moving up

Benefits

% Natively handles variable length numbers

% Well-suited for binary arithmetic

% Very efficient for neuron count and overall spike counts

Drawbacks
% Requires cautious “bookkeeping” and/or external halt signal
% Computing in time adds a latency to calculations

4

Threshold=3

Threshold =2

__‘.* W=-1

w=1
Input Neurons

Fire with Little Endian
Binary Code
(LSB first)

Threshold=1
1=1 (full decay)

‘. Threshold=1

QOutput Neuron
Fire with Little Endian
Binary Code
(LSB first)

/" Circuit for binary streaming adder

Output

Begin |
® | 8timesteps
«» Complete O ‘ | ’I
S Inputo () l I | I I I |
mputt O |11 [
Begin @ I |
| 9timesteps
Complete @ I estep |
e AEEERRERERE
* carry0 O l l l l
oyt @ ||
O NN

01101001 100011101

SeLL el v llolee

self.supported codings = ['binary-L']

build(self, graph, dimensionality, control nodes, input_lists, input codings):

Build streaming adder brick.

Arguments:
+ graph - networkx graph to define connections of the computational graph
+ dimensionality - dictionary to define the shapes and parameters of the brick
+ control nodes - dictionary of lists of auxillary networkx nodes. Excpected keys:
+ input lists - list of nodes that will contain input
+ input_coding - list of input coding formats

Returns:
+ graph of a computational elements and connections
+ dictionary of output parameters (shape, coding, layers, depth, etc)
+ dictionary of control nodes ('complete')
+ list of output
+ list of coding formats of output

if len(input_codings) != 2:
raise ValueError ("adder takes in 2 input on size n")

output_codings = [input_cedings[0]]

new_complete node name = self.name + '_complete’
new_begin node name = self.name + ' _begin'

graph.add node (new_complete_nocde_name,
index = -1,
threshold = 0.0,
decay =0.0,
p=1.0,
potential=0.0)
#graph.add edge(control nodes(0]('camplete’], new complete node name,weight=1.0,dslay=1)

graph.add edge (control nodes([0] ['complete'], new complete node name, weight=1.0, delay=2)

graph.add edge(control nodes[0] ['begin'], new _begin node name, weight=1.0, delay=2)

complete node = new_complete node name
begin _node = new begin node_name

#xor node name = self.name + ' 0’

1 = len(input_lists(0])

'complete' - A list of

/" Example Fugu Code for binary streaming adder

Threshold=3

Input Neurons
Fire with Little Endian w=1
Binary Cod

(LSB first)

1 = len(input_lists(0])

#nodes
graph.add node (self.name
graph.add node(self._name
graph.add node(self.name
graph.add node(self.name
f#edges

+
+
+
-

I?

Threshold=2

Output Neuron

W=1 Fire with Little Endian

Binary Code
(LSB first)

Threshold=1

7= 1 (full decay)

‘add', threshold=.S5, decay=1.0, p=1.0, potential=0.0)
‘carry0', threshold=1.S, decay=1.0, p=1.0, potential=0.0)-
'carryl', threshold=2.3, decay=l1.0, p=1.0, potential=0.0)
‘out', threshold=.5, decay=1.0, p=1.0, potential=0.0)

B graph.add edge(input_lists(0] (0], self.name
9 graph.add edge(input_lists(1] (0], self.name
0 graph.add edge(input_lists([0] (0], self.name
graph.add edge (input_lists(1] (0], self.name
graph.add edge (input_lists(0] [0], self.name
graph.add_edge (input_lists(1] (0], self.name

graph.add edge(self.name +
graph.add edge(self.name +
graph.add edge(self.name +

— graph.add edge(self.name +

0 graph.add edge(self.name +
1 graph.add edge(self.name +

4 self.is built=True

+
+
+
+
+
-

‘add', weight=1.0, delay=l)
‘add', weight=1.0, delay=l)
'carry0', weight=1.0, delay=l)
'carry0', weight=1.0, delay=1l)
‘carryl’, weight=1.0, delay=l)
'carryl', weight=1.0, delay=l)

‘carry0', self.name + 'add', weight=1.0, delay=1l)
‘carry0', self.name + 'carry0', weight=1.0, delay=l)
‘carry0’', self.name + 'carryl', weight=1.0, delay=1l)

‘add', self._name + 'out', weight=1.0, delay=1l)
‘carry0', self.name + 'out', weight=-1.0, delay=l)
‘carryl', self.name + 'out', weight=1.0, delay=l)

output_lists = [[self.name + 'out']]

return (graph, self.dimensionality,

[{'complete': complete node, 'begin': begin node}], output_lists

Simple addition example

scaffold = Scaffold()

For addition, what ve vant to do is create a Scaffold taking twvo inputs and the adder brick

scaffold.add brick (Vector_ Input(np.array([{[1, 1, 0, 1
scaffold.add brick (Vector_Input (np.array([[0, 1, 1, 0
scaffold.add brick (streaming adder (name='adderl '), [, 0)], output=True)
scaffold.lay bricks()

scaffold. summary (verbose=1)

backend = snn_Backend ()

backend args = {}

backend args['record'] = ‘all’
backend.compile (scaffold, backend args)
result = backend.run(30)

i, 1]]), coding='binary-L',6 name='"Input0',6 time dimens
» 0, 11]), coding='binary-L', name='Inputl’, time dimens

15 print(result)
<
18 5.0 8.0
18 Ss.0 S.0
20 §.0 10.0
21 6.0 2.0
22 6.0 11.0
23 €.0 8.0
24 7.0 2.0
25 7.0 5.0
26 7.0 11.0
7 7.0 1.0
28 7.0 4.0
28 7.0 8.0
30 8.0 11.0
31 8.0 8.0
32 8.0 S.0
33 5.0 6.0
3¢ s.0 8.0
35 10.0 11.0
'

/" Example Fugu Code for binary streaming adder

Threshold=3

I!

Threshold=2

:. Threshold=1
-1

Output Neuron
Input Neurons w=1 Fire wi.th Little Endian
Fire with Little Endian w=1 Binary _Code
Binary Code (LSB first)
(LSB first) Threshold=1
1=1 (full decay)
Begn @ || .
' 8timesteps | o
g Complete @ | |
> | | | | | | i | | |
= Loy N Lo 4 P
£ Inputo () l|s|||s| .
ez O L0
gn @)
| 9timesteps B
Complete @ I 1 I |
s ~ @ [1iHHrrrrnr
IS : .
= o A o
evo @ | LI0D 1
e«v: @ | |
ot @ | 1 LII |

Growing suite of neuromorphic arithmetic logic

Adder:y=A+B Shift multiplier:y = 2°d * A
Threshold = 3 1101 —) 11010
Add single bin delay
Toreshole= 1 ||| ||||| L ||| ||||| L1

Output Neuron N
W=1 Fire with Little Endian Time

Input Neurons

Fire with Little Endian w=1 Binary _Code
Binary Code (LSB first)
(LSB first)

Threshold=1

Inverter: y=

w=-1

Multiply: y = a*x e

reset =0,init=0

'w& .
['{A Subtractor: y=A-B
JT | <

delay

Time

Check
—
Carry Bit

0

/

4

4

Fibonacci Example

A sandialabs / Fugu = pusiic

<> Code (%) Issues [Pullrequests

[D Files

¥ main - Q

Q, Gotofie

~ @ sxamples

« [@ notebooks
D EightTwentyTutorial.ipynb
[Example_Brick_Building.ipynb
D FibonacciTutorial.ipynb
[Fibonacci_Example.ipynb
[adderipynb
[arithmetic_example.ipynb
[adder_example.py

O fugu_te:

By
[lis_examplepy
[max_sxample.py

LICENSE

requirement:

||
o
[READMEmd
o
b

setup.py

ttps://github.com/sandialabs

() Actions [Projects () Security |~ Insights
Fugu / examples / notebooks / Fibonacci_Example.ipynb (2
@ SNL-NERL Initial release of Sandia Labs Fugu spiking neural algorithm too

| Preview | Code = Blame ss¢ L

Fugu Example Notebook - Fibonacci Sequence

Brad Aimone, 3/14/2022. Happy Pi Day.

tebook shows how

an be used to generate more complex arithm

from basic streaming arithmetic functions such

as addition. The goal of this notebook is to show how more complex arithemetic fucntinos can

mposed from Fugu bricks.

Neuron Coding Scheme

The examples in this notebook describe circuits that use inputs which are encoded u
LE

ing a little-endian-in-time (LEIT) coding scheme,
coding is simple - think of & binary description of a number (19 = 10011}, flip it arcund so the least significant bit
11001}, and then have the input neuron spike at the first, second, and fifth timesteps.

Step 0: Setup

First, we need to import Fugu and other relevant lib

Here, he adder bricks

import networkx as nx

import numpy as np

import fugu

from fugu import Scaffold, Brick

from fugu.bricks import Vector_Input

from fugu.backends import snn_Backend

from fugu.bricks import streaming_adder, temporal_shift
%load_ext autoreload

¥awtoreload 2

Example 1: Brute force circuit

The goal of this circuit is to implement the Fibonacci sequence by brute force; if we want to go 10 layers, we will have 10 adders.

scaffold = Scaffold()
F_i=[8,8]
F_2=[1,8]
shift_length_total = 2

sraffald.add brickiVector Tonutinn.arcawfTE 1714, rodine="hinarv-l ' . name="F1'. time dimensinn

Tinnutty @8

/

/~ Fibonacci Example
/

s’

https.//github.com/sandialabs/Fugu/blo
b/main/examples/notebooks/Fibonacci.
Example.ipynb

F_1=[@,8]
F_2=[1,8]

shift_length_total = 2

scaffold.add_brick(Vector Input(np.array([F_1]), coding=
scaffold.add_brick(Vector Input(np.array{[F_2]), coding=

The first adder

will add of FI1 and F2. This output is F3

scaffold.add_brick(streaming_adder{name="add_12 '}, [(@,8), (1,8)], output=True) #2

The second adder adds a time-delayed version (2 timesteps) of F2 and F3.

"binary-L", name='F1l", time dimension=True), "input’) #28
‘binary-L', name='F2", time_dimension=True), ‘input'}) #I

This output is F4

scaffold.add_brick(temporal_shift(name='shift_2_°, shift_length=shift_length_total), [(1,@)], output=True) #3
scaffold.add_brick(streaming_adder{name="add_23 '), [(2,8), (3,8)], output=True)

s a time-delayed version of F3 and F4. This output is F5
emporal_shift({name="shift_3 ', shift_length=shift_length_total),
ftreaming_adder{name="add 34 '), [(4,8), (5,8)], output=True)
bds a time-delayed version of F4 and F5. This output is F6
emporal_shift({name='shift 4 ', shift_length=shift_length_total),
ftreaming_adder{name="add_45 '), [(6,8), (7,8)], output=True)

Ll do this for 18 elements
emporal_shift(name="'shift_5 ', shift_length=shift_length_total),
ftreaming_adder{name="add_56_'), [(&,8), (9,8)], output=True)

scaffold.add_brick(temporal_shift(name='shift_&_°, shift_length=shift_length_total),
scaffold.add_brick(streaming_adder{name='add_&7_'), [(1@,8), (11,8)], output=True)

scaffold.add_brick(temporal shift(name='shift 7 ', shift_length=shift_length_total),
scaffold.add_brick(streaming_adder{name='add_78_'}), [(12,8), (13,8)], output=True)

scaffold.add_brick(temporal_shift(name="shift_8_ ", shift_length=shift_length_total),
scaffold.add_brick(streaming_adder{name="add_89 '), [(14,8), (15,8)], output=True)

scaffold.add_brick(temporal_shift(name='shift_9 °, shift_length=shift_length_total),
scaffold.add_brick(streaming_adder{name='add_21@ '), [(16,8), (17,8)], output=True)

scaffold.lay_bricks()

[(2,8)], output=True) #5

[(4,@2)], output=True) #7

[(6,8)], output=True) #9

[l
(=]

[(8,8)], output=True) #1

[(1@,8)], output=True) #13

[(12,8)], output=True) #15

[(14,8)], output=True) #17

/

//Fibonacci Example

4

s’

Eh

https.//github.com/sandialabs/Fugu/blo
b/main/examples/notebooks/Fibonacci.
Example.ipynb

Spike Raster

B0 . -
.
I|"
] : : ¢
&0 *eo""
2e.2t
®] . e ™
A100° .
I 40 ™ . .
.l [] ®
es °
. .
20 - ;'-'
e " *
L] . B
*_ e Fibonacci
04 ! : Fibonacci
— Fibonacci
0 5 10 Fibonacci
Fibonacci
Fibonacci
Fibonaccil
Fibonacci

N b =

8.
13

[l == « B = VR) R PR

o o o o o

.0 at
21.0 at
0 34.0 at neuron 74

pun

at
at
at
at
at

neuron
neuron
neuron
neuron
neuron

11
20
29
38
47

neuron 56
neuron 65

/-

7 Fibonacci Example

7

https.//github.com/sandialabs/Fugu/blo
b/main/examples/notebooks/Fibonacci.
Example.ipynb

Delay(n, D)

Delay(n+1, 2D)

Fugu Benefits and Limitations

Benefits Limitations
* Transparent hardware execution » Designing bricks is challenging
- Compositional approach * Not many bricks exist
 Easy scaling *|IR is static (in current version)
 Lower barrier of entry - Hardware execution is not 100%

identical to simulator evaluation
*'Do what you're good at'

Evolutionary Algorithms (EAs) can take advantage of the
benefits and minimize the limitations

Evolutionary Algorithms
NEAT provides a ready-to-go EA approach

- Evolutionary Algorithms (EAs) are a family of optimization algorithms
- Randomly alter and modify a population of candidate solutions
- Evaluate candidate solutions against a fitness function
- Keep best candidates and repeat

- "Evolutionary Optimization for Neuromorphic Systems" (EONS) is popular for
spiking neural networks

* "NeuroEvolution of Augmenting Topologies" (NEAT) is a long-standing approach
from traditional neural networks

 Well-studied approach (4000+ citations) with multiple implementations

* NEAT offers a strong, flexible framework for using EAs in Fugu

NEAT — Fugu Neuron Conversion
Fugu's LIF model adapts easily

- NEAT is very flexible, we use the default feed-
forward genome Input Delay 1 Delay 2

* Recurrent is a straightforward modification

activation function and a 'sum' aggregation.

 With this configuration, most the parameters have a
clear correspondence (e.g. weight = weight, -bias =
threshold)

 In NEAT's configuration, we force a 'threshold’ <
——

Delays are determined by the

 Delays are derived from the sequence activation of layering of the NEAT network
the layers (e.g. neurons in layer 5 connected to layer
3 will have delay 2)

Neat Fugu Approach

NEAT provides candidate networks are evaluated in-parallel within a

Fugu scaffold

\

rneat-python

[Generation 0

Genomes
Genome eoee Genome) ﬂ

(Generation N

Genome eee Genome)

2

PR -

J

[fugu

Input
Pre-Processing

~

NEAT

Genome eee Genome

| >4

Post-Processing

Nd

Fugu
Backend

|

Example schematic of how neat-python interacts with Fugu.

e

Simple Scaffold Details

* In the basic case, we only need an input brick and

a NEAT brick
A Basic NEAT
* Input spikes are streamed in sequence Scaffold
- Fugu doesn't require a specific input coding ‘ o |

« We use a Base P encoding for simplicity
* A better encoding could improve performance

 Output spikes can be decoded to compute the

fitness function ,‘.TEAT B T ‘

- We usually use a Squared Error, normalized by i
the number of outputs (classes)

- However, the fitness function can be whatever
you define

Example Population Update |

Network Graph

(
4

1
{

v
DN

\

w 5.5

4

2 50

L 45
4.0
35

M
/)
i

Max Fitness (solid) and Mean Fitness (dashed) |

9.5
9.0 I
8.5

8.0
7.5 F
7.0

6.5
6.0

3.0
2.5
2.0
1.5
1.0

0.5
O'00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 5§

Generation

Testing Tasks with Basic Scaffold

NEAT + Fugu applies to a wide range of problems

Task: XOR Iris Agent
Fitness: 4/4 29.67/30 8/8

Signal

3 R e

A Signal Classification Task

Dataset Generated by Adding Noise to Baseline Signals

Task: Classify the source signal of 500-timestep noisy time series signals

Sample Signals
1.2

0.8

yo

0.4
0

1.2
g 08 e 2
0 T o
0.4 (7]
0
1.2
0.8 @
0.4
0 A : :

0 100 200 300 400 500
Timestep

Using Composition
Effective Feature Extraction using Sparse Projection

- Random sparse projection reduces the

timeseries into a 25-feature vector NEW Wit Sparss

Projection

A learned NEAT classifier was trained |
' i : : nput
from this representation, with a voting

output / \

- With this scheme, it is easy to get high ‘ sparse | ___ [sparse |
accuracy: 96%, much better! | Prajsction’] | | Frojechiony)

N\ /

. Show the flexibility and utility of Fugu

composition :\NEAT Genome = == Genome J
* More non-EA options that just feature Output "
extraction: Post-processing, reference Spies

networks (distillation), validation,
metrics, etc., etc....

Fugu Enables Easy Hardware Execution

Scaling can be great. Compile times need improvement.

« Switching from simulator to hardware is

easy in Fugu Loihi Runtime by Neuron Updates
backend = snn Backend () Y,=1'979+3'192e_6*x o
: ' o 30 R:0994
£
(t ackend = loihi Backend () g 20-
s
£
. Using hardware in-the-loop means you 3™ oirs
get the exact deployment behavior ;
0e+0 2046 4e+6 Berb Betb 1e+7
- Also an easy, scalable hardware Neuron Updates (Number of neurons x Timesteps)

benchmark

» We performed a quick benchmark using
Intel Loihi

e Evolutionary learning + Fugu
e Easy to use, Modular approach
e Platform-agnostic

 Composition has benefits and
deep implications

 On-hardware evaluation
e Accurate deployment

* Easy benchmarking

* Possible Extensions:
* Real tasks and applications
e Detailed benchmarking
» Algorithmic modifications

e Scaleable learned networks

/.
7,
74

Open-source Full-Stack Sandia's Neural
Fuguis Neuromorphic Exploration &
available on Booklet Research

Laboratory

o mf

E'E- .E F:

https://github.com/sandialabs/Fugu https://www.sandia.gov/app/uploads/sites/ https://neuroscience.sandia.gov
223/2022/12/Full-Stack-Neuromorphic-
SAND2022-10373M.pdf

:I-

l-
IIL

EI

.
o

Fugu-Neat is available in fugu.experiemental

// So what about these other cognitive and Al applications of
" neuromorphic?

Artificial neural networks m)Bk
» Generic layers of non-linear I[Norse U\

@ nodes

)»/ m o o @ S T
e o @ Q% e . i rch
’ ©g.%.5.% + SGD optimization of weights pykelo _
. 'i--'. ¢ &« Powerful machine learning snnTorch_ b
capabilities through learning PYSNN :
sequential non-linear mappings WHETSTOME

and function approximation
Spiking neural algorithms e I |

* Hand-crafted circuits of
spiking neurons % g
* Model of parallel computation) g

 Energy efficiency through \../
event-driven communication E’

and high fan-in logic

Neural
Algorithms

Neuroscience-constrained

algorithms

+ Circuit architecture based on
local and regional neural

e connectivity

S . - Computation incorporates broad

range of neural plasticity and

dynamics

: 2 WIAN
* Generally still unexplored from '] h‘l

algorithms perspective
nest::

simulated()

// Simulation Tool for Asynchronous Cortical Streams
(STACS)

4

STACS is a large-scale sFiking neural network simulator built on top
of the Charm++ parallel programming framework (workload
decomposed as parallel objects)

= Network models are represented as a directed graph, and
neuron and s%/napse model dynamics are formulated as
stochastic differential equations:

= dx=f(0)dt+YL, dN; :time-driven computation,
communication

= Simulation is supported by partition-based data structures, and
serialized through SNN extensions to the distributed
compressed sparse row (SNN-dCSR) data format

s’

3

. . . . 1e6 Network Spike Raster (subsampled)
= These facilitate network generation, graph-aware partitioning, R S S R S L (R i ST R
checkpoint/restart, scalable multicast communication, and tool : , : ' — mec |
interoperability 02 5 - e e
= STACS may be used as a standalone simulator, _os = = e
as a backend to tools like N2A or Fugu, and also i E“ — flee.
interface with external devices through YARP 06
- Available at: https://github.com/sandialabs/STACS “us [—m m :
Simulation of a biologically inspired qé -

spiking neural network of about 5 .
12M neurons and 70B synapses iz — am———"

0 200 400 600 800

TR
1000
o ‘

https://github.com/sandialabs/STACS

STACS supports network generation
over spatially-defined topologies.
Here, a visualization of a 6000
neuron network over a sphere.

7 Selected features of STACS

The SNN-dCSR format supports network (re)partitioning,
making it suitable for computational parallelism, whether
its target platform is between nodes on an HPC system
or between chips on neuromorphic hardware.

dist adjcy.0 adjcy.1 adjcy.2
00 134 135889 347 9 11
4 13 0 4 4 9 4 5 8
8 29 367 2 7 7 11
12 42 02478 2 3 6 8 10 11 7 8 10
state.O state.l state.2
@ 0O b 0 4 cdfopo 8010q0
l1adg 5g® 9mn®
2 0 ho 6 O o 10 O u
30ed0jk T7Ti1i00pro 11 st 0

Example 3-way partitioning of a simple network with 12
vertices and 21 directed edges using the SNN-dCSR
format. Directed edges with associated state are bolded.

/ Selected features of STACS

Covariance between Contexts

S

pike Raster

Network snapshots, state probes, and spike events
can be recorded from large-scale and long-running
simulations for sophisticated offline analysis.
Computing the separability of spike rates between
contexts (left). Identifying recurrent causal activity
patterns through a combination of network
structure and spiking activity (below).

2000

c
e
4
z

10000

Spike Rates

Time (s) Graphical Neural Activity Threads (GNATSs)

P/ Selected features of STACS

STACS supports user-defined model dynamics

(structured as SDEs through an abstract class), STACS also supports interfacing with
which enables algorithm and model exploration, devices through YARP, which enables
or the emulation of hardware implementations. closed-loop system exploration and

external communication and control.

v =0.040> 4+ 50+ 140 —w + I
u' = a(bv —u) {

V<4 C

if v > vy, , then
u+—u+d

5 ATTOATEN Reward | R
'? : "_--.',"_.. 1y '..:‘
k: A WIS s e) Sensor
NSt (Observation)
—— RSS20 /——\
g Environment
PolyNet Spike Raster Neur_al Network (Dynamic System)
10K Synapses/Neuron i } o :::_‘"E‘ (|nte”|gent Agent) —_—
2109 — ok ol Motor (Action)
% 0.8 4 —— EtoE,I
FUGU 2 oo] ol 1
é 0.4+ g $
% 62/ 20 38
5 {
S 0.0 wo| LB

0 50 100 150 200 250
Distance (um)

£

Where STACS sits within the neuromorphic ecosystem

/ = Description Languages | STACS s able to interoperate with software
= PyNN, NeuroML, NineML, etc. frameworks such as N2A or Fugu through:
= Translating between higher-level network
description languages (N2A - YAML)
= As a simulation backend for instantiated
= N2A, Fugu, Lava, Nengo, etc. networks (Fugu — NetworkX — SNN-dCSR))

= Software Frameworks

= Network Simulators ; STACS is primarily a spiking
= NEST, NEURON, Brian, GeNN, etc. neural network simulator

= Data Formats The partition-based SNN-dCSR data format

. supports external tool interoperability:
NIR, SONATA, NetworkX, GEXF, etc. = Such as graph partitioners (e.g. ParMETIS),

[and network analysis (e.g. GNATFinder)
= Hardware Platforms = |t also provides a path toward mapping
= Loihi, SpiNNaker, BrainScales, etc. instantiated networks to different

neuromorphic hardware platforms

N2a

Sandia’'s attempt to answer the above questions.

« “Neurons to Algorithms”
 In development since 2011
« Open source, available on Github

Main features

« Object-oriented, declarative language
 Integration with Git for team-based modeling
« Runs jobs on supercomputers

« Parameter sweeps and optimization

Needs gttps://github.com/sandialabs/n
2a

« Better supercomputer backend Please join us in
« More support for model-exchange formats ‘e :
PP © building this tool!

) 59

https://github.com/sandialabs/n2a
https://github.com/sandialabs/n2a

Inheritance

A

Sub-Parts
@ Cell Hodgkin-Huxley %
& S$inherit = Segment /
>~ & $metadata leak
o= & $xyz = [0;0;0]*1um Channel Passive
= AC = Cspecific*surfaceArea
= & Cspecific = 1(uF/cm2)
e A =+ ® Na
AR = p’length/(TT*r"2) Channel Na
LY = oV @ S$init
= AV = liC@cC oK
o A \spike = 30mV - -
« A diameter - 1um £ Sinherit = Channel K
o A diameter0 = diameter # $metadata
- A fire = V==Vspike A Supl =+
A length =1 norm($xyz-xyz0,2) s &oE = -7fmV
o o - AG =: Galfopen*Q10Scaling
iy =: (diameter+diameter0)/4
o A spike = fire & &Gl = 0pS
o A surfaceArea = € e 4 Gall = Gdensity*surfaceArea
o A xyz0 = $xyz LS i Gdensity i 3[2(m81<:m2)
- ap = 30(0hm.cm) pal =GRV
o A Q10Scaling =~
& fopen =*
o A population = 1
= @ n (Gate)

@ Spike Source ® Compartment
- & $metadata ‘ < E $inherit = Spike Source
o 2 spike = 0 - & $metadata
=AC = 10pF
- A =+
= AN = OV @ $init
= A\ = liC
o A Vspike = 30mV
= A fire = V==Vspike
= A& gpike = fire
Blue is inherited
Black is local
@ Channel
> & $metadata <
A $Sup =+
= AE = O0mV
= AG = Gal*fopen*Q10Scaling
- A (G = ODS
e 4 Gall =: Gdensity *surfaceArea
= A Gdensity = 0(mS/cm2)
= A = G*E-V)
= & Q10Scaling =*
A fopen =%
= A population = 1

@ Segment
& S$inherit = Compartment <
- & $metadata
o A $xyz = [0;0;0]*1um
= AC = Cspecific*surfaceArea
= & Cspecific = 1(uF/cm2)
e A =+
AR = p’length/{TT*r"2)
= AN = OV @ $init
= AN = liC@cC
- A \spike = 30mV
= 4 diameter = 1um
= & diameter0 = diameter
- A fire = V==Vspike
4 length =2 norm($xyz-xyz0,2)
iy =: (diameter+diameter0)/4
o & gpike = fire
¢ & surfaceArea =:
« 2*1*r*length
« 472 @ length==0
o= £ xyz0 = $wyz
= 4P = 30(Ohm.cm)
@ Channel K
Z Sinherit = Channel
o & $metadata
& $up =+ Gate
- AE = -77mV
- AG =: Gall*fopen*Q10Scaling
o= A G1 = 0pS
o A Gall =: Gdensity*surfaceArea
o A Gdensity = 36(mS/cm2)
Ly = G*(E-V)
o A Q10Scaling =~
4 fopen ==
o A population = 1

The part set illustrated here is based on the
NeuroML schema and its LEMS code.

N2A can read and write NeuroML/LEMS models.
You can define any part set you wish, even in a
domain other than neuroscience.

eh

Summary

« Dynamical system modeling language and tool
« Simulator agnostic
- Enables teams of neuroscientists to collaborate on large-scale / complex models

« Parts defined with simple set of equations. No need to program.
 Build complex structures from simple structures by reusing parts.

« Publicly available: https://github.com/sandialabs/n2a
« Continuous development, supported by major national laboratory

61

https://github.com/frothga/n2a

Collaboration

« Repository - collection of Parts, version-controlled with git
« Each user can have several repositories
« Each repo can be linked with an upstream git server

github.com

Cecilia

Dorothy

62

Collaboration

« Ul for managing repositories
« Merges Git pulls correctly, preserving local work

& Neurons to Algorithms
f & Models ’/E@ References ’/ O Runs |/Q}§tudies r £ Settings ‘

& About Add |Edit |View |Color [Name Git Remote
= General I ocal git@github. com:frothga/n2a-repo-local.git
& Look & Feel O | O - [EEEE git@agithub. com:frothga/n2a-repo-base. git
0 Repositories ol (o] (@

v | %
4= Hosts
@ Backend C Commit |Filename Author Fred Rothganger <frothga@sandia.gov=
i Backend Fugu models/Example Hodgkin-Huxley Cable

Commit message:

& Backend Loihi

~ Backend NeuroML
Backend Python

+ Backend SpiNNaker

¢ HH
x0 = output(V/)
x0 = output(V)@%$index<3

// So what about these other cognitive and Al applications of
" neuromorphic?

Artificial neural networks m)Bk
» Generic layers of non-linear I[Norse U\

@ nodes

)»/ m o o @ S T
e o @ Q% e . i rch
’ ©g.%.5.% + SGD optimization of weights pykelo _
. 'i--'. ¢ &« Powerful machine learning snnTorch_ b
capabilities through learning PYSNN :
sequential non-linear mappings WHETSTOME

and function approximation
Spiking neural algorithms e I |

* Hand-crafted circuits of
spiking neurons % g
* Model of parallel computation) g

 Energy efficiency through \../
event-driven communication E’

and high fan-in logic

Neural
Algorithms

Neuroscience-constrained

algorithms

+ Circuit architecture based on
local and regional neural

e connectivity

S . - Computation incorporates broad
range of neural plasticity and
dynamics

* Generally still unexplored from
algorithms perspective

BRIAN
y

nest::

simulated()

/4 Thank You!

Fugu
o William Severa, Craig Vineyard, Srideep
Musuvathy, Yang Ho, Leah Reeder, Michael
Krygier, Fred Rothganger, Suma Cardwell, Ingri
Lane, Aaron Hill, Zubin Kane, Sarah Luca, ...

STACS, N2A, and Neural Simulations
o Felix Wang, Fred Rothganger, Brad Theilman, ..

Broader Sandia Neuromorphic Algorithms
Team

o Darby Smith, Ojas Parekh, Rich Lehoucq, Franc
Chance, Corinne Teeter, Mark Plagge, Ryan
Dellana, Shashank Misra, Conrad James, Chris
Allemang, Brady Taylor, Yipu Wang, William
Chapman, Efrain Gonzalez, James Boyle, Cale
Crowder, Clarissa Reyes, Cindy Phillips, Ali Pine

SR, U.S. DEPARTMENT OF Office of

- \
- _ Sandia P
JENERGY orcne roroesnonso ([4% o

	Slide 1: Programming Scalable Neuromorphic Algorithms with Fugu
	Slide 2: Thank You!
	Slide 3
	Slide 4
	Slide 5: Neuromorphic computing today
	Slide 6: Sandia has some of the largest spiking neuromorphic systems
	Slide 7: Neuromorphic hardware jumped ahead of the rest of the stack
	Slide 8: A quick aside: most neuromorphic hardware is not designed for artificial neural networks
	Slide 9
	Slide 10: As a community, we all mean different things when we talk about neural algorithms…
	Slide 11: Different classes of neural algorithms have received varied attention
	Slide 12: … meanwhile, hardware is rapidly evolving and scaling
	Slide 13
	Slide 14
	Slide 15: Fugu aims to bring neuromorphic solutions to general computing world
	Slide 16
	Slide 17: What is Fugu? And Why?
	Slide 18: What Fugu is *not*
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Okay… so what exactly is a brick? …some intuition using a simple arithmetic example
	Slide 31: Little Endian in Time coding scheme
	Slide 32: Circuit for binary streaming adder
	Slide 33
	Slide 34: Example Fugu Code for binary streaming adder
	Slide 35: Example Fugu Code for binary streaming adder
	Slide 36: Growing suite of neuromorphic arithmetic logic
	Slide 37: Fibonacci Example
	Slide 38: Fibonacci Example
	Slide 39: Fibonacci Example
	Slide 40: Fibonacci Example
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: So what about these other cognitive and AI applications of neuromorphic?
	Slide 54: Simulation Tool for Asynchronous Cortical Streams (STACS)
	Slide 55: Selected features of STACS
	Slide 56: Selected features of STACS
	Slide 57: Selected features of STACS
	Slide 58: Where STACS sits within the neuromorphic ecosystem
	Slide 59: N2a
	Slide 60: Inheritance
	Slide 61: Summary
	Slide 62: Collaboration
	Slide 63: Collaboration
	Slide 64: So what about these other cognitive and AI applications of neuromorphic?
	Slide 65: Thank You!

