Building Neuromorphic Applications Using Talamo

This offers a sneak-peek into Innatera’s technology stack allowing application development from scratch and deploying it on mixed-signal neuromorphic hardware.

Innatera is a trailblazing developer of ultra-low power intelligence for sensors. It enables fast and efficient processing of sensor data by combining a revolutionary brain-inspired computing architecture with powerful new software.

Social share preview for Building Neuromorphic Applications Using Talamo

Upcoming Workshops

The TSP1 Neuromorphic Chip: Advancing Brain-Inspired Computing
Chris Eliasmith, Danny Rosen
November 11, 2025
8:00 - 9:00 EST

About the Speakers

George Vathakkattil Joseph

George Vathakkattil Joseph

Product Architect at Innatera, focusing on continuous-time non-von Neumann computing. PhD in dynamical systems. Defines Innatera's software/hardware architecture.
Fabrizio Ottati

Fabrizio Ottati

AI/ML Processor Engineer at NXP, PhD from Politecnico di Torino. Focuses on event cameras, digital hardware, and deep learning. Maintains Tonic & Expelliarmus.

Inspired? Share your work.

Share your expertise with the community by speaking at a workshop, student talk, or hacking hour. It’s a great way to get feedback and help others learn.

Related Workshops

The ELM Neuron: An Efficient and Expressive Cortical Neuron Model Can Solve Long-Horizon Tasks

The ELM Neuron: An Efficient and Expressive Cortical Neuron Model Can Solve Long-Horizon Tasks

Aaron tells us about the Expressive Leaky Memory (ELM) neuron model, a biologically inspired phenomenological model of a cortical neuron.

Lava: An Open-Source Software Framework for Developing Neuro-Inspired Applications

Lava: An Open-Source Software Framework for Developing Neuro-Inspired Applications

Discover Lava, an open-source software framework for neuro-inspired applications, presented by Andreas Wild and Mathis Richter. Dive into the future of neuromorphic computing.

NIR: A unified instruction set for brain-inspired computing

NIR: A unified instruction set for brain-inspired computing

We show how to use the Neuromorphic Intermediate Representation to migrate your spiking model onto neuromorphic hardware.